Search results

1 – 4 of 4
Article
Publication date: 12 August 2021

Wasiq Ullah, Faisal Khan, Muhammad Umair and Bakhtiar Khan

This paper aims to reviewed analytical methodologies, i.e. lumped parameter magnetic equivalent circuit (LPMEC), magnetic co-energy (MCE), Laplace equations (LE), Maxwell stress…

Abstract

Purpose

This paper aims to reviewed analytical methodologies, i.e. lumped parameter magnetic equivalent circuit (LPMEC), magnetic co-energy (MCE), Laplace equations (LE), Maxwell stress tensor (MST) method and sub-domain modelling for design of segmented PM(SPM) consequent pole flux switching machine (SPMCPFSM). Electric machines, especially flux switching machines (FSMs), are accurately modeled using numerical-based finite element analysis (FEA) tools; however, despite of expensive hardware setup, repeated iterative process, complex stator design and permanent magnet (PM) non-linear behavior increases computational time and complexity.

Design/methodology/approach

This paper reviews various alternate analytical methodologies for electromagnetic performance calculation. In above-mentioned analytical methodologies, no-load phase flux linkage is performed using LPMEC, magnetic co-energy for cogging torque, LE for magnetic flux density (MFD) components, i.e. radial and tangential and MST for instantaneous torque. Sub-domain model solves electromagnetic performance, i.e. MFD and torque behaviour.

Findings

The reviewed analytical methodologies are validated with globally accepted FEA using JMAG Commercial FEA Package v. 18.1 which shows good agreement with accuracy. In comparison of analytical methodologies, analysis reveals that sub-domain model not only get rid of multiples techniques for validation purpose but also provide better results by accounting influence of all machine parts which helps to reduce computational complexity, computational time and drive storage with overall accuracy of ∼99%. Furthermore, authors are confident to recommend sub-domain model for initial design stage of SPMCPFSM when higher accuracy and low computational cost are primal requirements.

Practical implications

The model is developed for high-speed brushless AC applications.

Originality/value

The SPMCPFSM enhances electromagnetic performance owing to segmented PMs configuration which makes it different than conventional designs. Moreover, developed analytical methodologies for SPMCPFSM reduce computational time compared with that of FEA.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 July 2020

Wasiq Ullah, Faisal Khan and Muhammad Umair

The purpose of this paper is to investigate an alternative simplified analytical approach for the design of electric machines. Numerical-based finite element method (FEM) is a…

Abstract

Purpose

The purpose of this paper is to investigate an alternative simplified analytical approach for the design of electric machines. Numerical-based finite element method (FEM) is a powerful tool for accurate modelling and electromagnetic performance analysis of electric machines. However, computational complexity, magnetic saturation, complex stator structure and time consumption compel researchers to adopt alternate analytical model for initial design of electric machine especially flux switching machines (FSMs).

Design/methodology/approach

In this paper, simplified lumped parameter magnetic equivalent circuit (LPMEC) model is presented for newly developed segmented PM consequent pole flux switching machine (SPMCPFSM). LPMEC model accounts influence of all machine parts for quarter of machine which helps to reduce computational complexity, computational time and drive storage without affecting overall accuracy. Furthermore, inductance calculation is performed in the rotor and stator frame of reference for accurate estimation of the self-inductance, mutual inductance and dq-axis inductance profile using park transformation.

Findings

The developed LPMEC model is validated with corresponding FEA using JMAG Commercial FEA Package v. 18.1 which shows good agreement with accuracy of ∼98.23%, and park transformation precisely estimates the inductance profile in rotor and stator frame of reference.

Practical implications

The model is developed for high-speed brushless AC applications.

Originality/value

The proposed SPMCPFSM enhance electromagnetic performance owing to partitioned PMs configuration which make it different than conventional designs. Moreover, the developed LPMEC model reduces computational time by solving quarter of machine.

Article
Publication date: 11 October 2020

Muhammad Umair, Faisal Khan and Wasiq Ullah

Field excited flux switching machines (FEFSM) are preferred over induction and synchronous machines due to the confinement of all excitation sources on the stator leaving a robust…

Abstract

Purpose

Field excited flux switching machines (FEFSM) are preferred over induction and synchronous machines due to the confinement of all excitation sources on the stator leaving a robust rotor. This paper aims to perform coupled electromagnetic thermal analysis and stress analysis for single phase FEFSM as, prolonged high-speed operational time with core and copper losses makes it prone to stress and thermal constraints as temperature rise in machine lead to degraded electromagnetic performance whereas the violation of the principle stress limit may result in mechanical deformation of the rotor.

Design/methodology/approach

This paper presents the implementation of coupled electromagnetic-thermal and rotor stress analysis on single-phase FEFSM with non-overlap winding configurations using finite element analysis (FEA) methodology in JMAG V. 18.1. three-dimensional (3D) magnetic loss analysis is performed and extended to 3D thermal analysis to predict temperature distribution on various parts of the machine whereas Stress analysis predicts mechanical stress acting upon edges and faces of the rotor.

Findings

Analysis reveals that temperature distribution and rotor stress on the machine is within acceptable limits. A maximum temperature rise of 37.7°C was noticed at armature and field windings, temperature distribution in stator near pole proximity was 35°C whereas no significant change in rotor temperature was noticed. Furthermore, principal stress at the speed of 3,000 rpm and 30,000 rpm was found out to be 0.0305 MPa 3.045 MPa, respectively.

Research limitations/implications

The designed machine will be optimized for improvement of electromagnetic performance followed by hardware implementation and experimental testing in the future.

Practical implications

The model is developed for axial fan applications.

Originality/value

Thermal analysis is not being implemented on FEFSM for axial fan applications which is an important analysis to ensure the electromagnetic performance of the machine.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 4 of 4