Search results

1 – 10 of over 56000
Article
Publication date: 1 October 2019

Yanan Li, Keng Peng Tee, Rui Yan and Shuzhi Sam Ge

This paper aims to propose a general framework of shared control for human–robot interaction.

Abstract

Purpose

This paper aims to propose a general framework of shared control for human–robot interaction.

Design/methodology/approach

Human dynamics are considered in analysis of the coupled human–robot system. Motion intentions of both human and robot are taken into account in the control objective of the robot. Reinforcement learning is developed to achieve the control objective subject to unknown dynamics of human and robot. The closed-loop system performance is discussed through a rigorous proof.

Findings

Simulations are conducted to demonstrate the learning capability of the proposed method and its feasibility in handling various situations.

Originality/value

Compared to existing works, the proposed framework combines motion intentions of both human and robot in a human–robot shared control system, without the requirement of the knowledge of human’s and robot’s dynamics.

Details

Assembly Automation, vol. 40 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 2020

Jing-Kui Zhang, Miao Cui, Ben-Wen Li and Ya-Song Sun

The purpose of this paper is to develop a combined method for three-dimensional incompressible flow and heat transfer by the spectral collocation method (SCM) and the artificial…

160

Abstract

Purpose

The purpose of this paper is to develop a combined method for three-dimensional incompressible flow and heat transfer by the spectral collocation method (SCM) and the artificial compressibility method (ACM), and further to study the performance of the combined method SCM-ACM for three-dimensional incompressible flow and heat transfer.

Design/methodology/approach

The partial differentials in space are discretized by the SCM with Chebyshev polynomial and Chebyshev–Gauss–Lobbatto collocation points. The unsteady artificial compressibility equations are solved to obtain the steady results by the ACM. Three-dimensional exact solutions with trigonometric function form and exponential function form are constructed to test the accuracy of the combined method.

Findings

The SCM-ACM is developed successfully for three-dimensional incompressible flow and heat transfer with high accuracy that the minimum value of variance can reach. The accuracy increases exponentially along with time marching steps. The accuracy is also improved exponentially with the increasing of nodes before stable accuracy is achieved, while it keeps stably with the increasing of the time step. The central processing unit time increases exponentially with the increasing of nodes and decreasing of the time step.

Research limitations/implications

It is difficult for the implementation of the implicit scheme by the developed SCM-ACM. The SCM-ACM can be used for solving unsteady impressible fluid flow and heat transfer.

Practical implications

The SCM-ACM is applied for two classic cases of lid-driven cavity flow and natural convection in cubic cavities. The present results show good agreement with the published results with much fewer nodes.

Originality/value

The combined method SCM-ACM is developed, firstly, for solving three-dimensional incompressible fluid flow and heat transfer by the SCM and ACM. The performance of SCM-ACM is investigated. This combined method provides a new choice for solving three-dimensional fluid flow and heat transfer with high accuracy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 October 2022

Haifeng Huang, Xiaoyang Wu, Tingting Wang, Yongbin Sun and Qiang Fu

This paper aims to study the application of reinforcement learning (RL) in the control of an output-constrained flapping-wing micro aerial vehicle (FWMAV) with system uncertainty.

Abstract

Purpose

This paper aims to study the application of reinforcement learning (RL) in the control of an output-constrained flapping-wing micro aerial vehicle (FWMAV) with system uncertainty.

Design/methodology/approach

A six-degrees-of-freedom hummingbird model is used without consideration of the inertial effects of the wings. A RL algorithm based on actor–critic framework is applied, which consists of an actor network with unknown policy gradient and a critic network with unknown value function. Considering the good performance of neural network (NN) in fitting nonlinearity and its optimum characteristics, an actor–critic NN optimization algorithm is designed, in which the actor and critic NNs are used to generate a policy and approximate the cost functions, respectively. In addition, to ensure the safe and stable flight of the FWMAV, a barrier Lyapunov function is used to make the flight states constrained in predefined regions. Based on the Lyapunov stability theory, the stability of the system is analyzed, and finally, the feasibility of RL in the control of a FWMAV is verified through simulation.

Findings

The proposed RL control scheme works well in ensuring the trajectory tracking of the FWMAV in the presence of output constraint and system uncertainty.

Originality/value

A novel RL algorithm based on actor–critic framework is applied to the control of a FWMAV with system uncertainty. For the stable and safe flight of the FWMAV, the output constraint problem is considered and solved by barrier Lyapunov function-based control.

Details

Assembly Automation, vol. 42 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 July 2020

Jiehao Li, Junzheng Wang, Shoukun Wang, Hui Peng, Bomeng Wang, Wen Qi, Longbin Zhang and Hang Su

This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory…

Abstract

Purpose

This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory tracking and stable operation with heavy load are the main challenges of parallel mechanism for wheel-legged robots, especially in complex road conditions. To guarantee the tracking performance in an uncertain environment, the disturbances, including the internal friction, external environment interaction, should be considered in the practical robot system.

Design/methodology/approach

In this paper, a fuzzy approximation-based model predictive tracking scheme (FMPC) for reliable tracking control is developed to the six wheel-legged robot, in which the fuzzy logic approximation is applied to estimate the uncertain physical interaction and external dynamics of the robot system. Meanwhile, the advanced parallel mechanism of the electric six wheel-legged robot (BIT-NAZA) is presented.

Findings

Co-simulation and comparative experimental results using the BIT-NAZA robot derived from the developed hybrid control scheme indicate that the methodology can achieve satisfactory tracking performance in terms of accuracy and stability.

Originality/value

This research can provide theoretical and engineering guidance for lateral stability of intelligent robots under unknown disturbances and uncertain nonlinearities and facilitate the control performance of the mobile robots in a practical system.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 9 August 2022

Bingjun Li, Shuhua Zhang, Wenyan Li and Yifan Zhang

Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the…

Abstract

Purpose

Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the broad applicability and effectiveness of the technique from different aspects and providing a new means to solve agricultural science problems. The analysis of the connotation and trend of the application of grey modeling technique in agricultural science research contributes to the enrichment of grey technique and the development of agricultural science in multiple dimensions.

Design/methodology/approach

Based on the relevant literature selected from China National Knowledge Infrastructure, the Web of Science, SpiScholar and other databases in the past 37 years (1985–2021), this paper firstly applied the bibliometric method to quantitatively visualize and systematically analyze the trend of publication, productive author, productive institution, and highly cited literature. Then, the literature is combed by the application of different grey modeling techniques in agricultural science research, and the literature research progress is systematically analyzed.

Findings

The results show that grey model technology has broad prospects in the field of agricultural science research. Agricultural universities and research institutes are the main research forces in the application of grey model technology in agricultural science research, and have certain inheritance. The application of grey model technology in agricultural science research has wide applicability and precise practicability.

Originality/value

By analyzing and summarizing the application trend of grey model technology in agricultural science research, the research hotspot, research frontier and valuable research directions of grey model technology in agricultural science research can be more clearly grasped.

Details

Grey Systems: Theory and Application, vol. 12 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 21 June 2022

Hong-Sen Yan and Chen-Long Li

This paper aims to provide a precise tracking control scheme for multi-input multi-output “MIMO” nonlinear systems with unknown input time-delay in industrial process.

Abstract

Purpose

This paper aims to provide a precise tracking control scheme for multi-input multi-output “MIMO” nonlinear systems with unknown input time-delay in industrial process.

Design/methodology/approach

The predictive control scheme based on multi-dimensional Taylor network (MTN) model is proposed. First, for the unknown input time-delay, the cross-correlation function is used to identify the input time-delay through just the input and output data. And then, the scheme of predictive control is designed based on the MTN model. It goes as follows: a recursive d-step-ahead MTN predictive model is developed to compensate the influence of time-delay, and the extended Kalman filter (EKF) algorithm is applied for its learning; the multistep predictive objective function is designed, and the optimal controlled output is determined by iterative refinement; and the convergence of MTN predictive model and the stability of closed-loop system are proved.

Findings

Simulation results show that the proposed scheme is of desirable generality and capable of performing the tracking control for MIMO nonlinear systems with unknown input time-delay in industrial process effectively, such as the continuous stirred tank reactor (CSTR) process, which provides a considerably improved performance and effectiveness. The proposed scheme promises strong robustness, low complexity and easy implementation.

Research limitations/implications

For the limitations of proposed scheme, the time-invariant time-delay is only considered in time-delay identification and control schemes. And the CSTR process is only introduced to prove that the proposed scheme can adapt to practical industrial scenario.

Originality/value

The originality of the paper is that the proposed MTN control scheme has good tracking performance, which solves the influence of time-delay, coupling and nonlinearity and the real-time performance for MIMO nonlinear systems with unknown input time-delay.

Article
Publication date: 3 July 2017

Qingshan Wang, Dongyan Shi, Qian Liang and Fuzhen Pang

The purpose of this work is to apply the Fourier–Ritz method to study the vibration behavior of the moderately thick functionally graded (FG) parabolic and circular panels and…

189

Abstract

Purpose

The purpose of this work is to apply the Fourier–Ritz method to study the vibration behavior of the moderately thick functionally graded (FG) parabolic and circular panels and shells of revolution with general boundary conditions.

Design/methodology/approach

The modified Fourier series is chosen as the basis function of the admissible functions of the structure to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges, and the vibration behavior is solved by means of the Ritz method. The complete shells of revolution can be achieved by using the coupling spring technique to imitate the kinematic compatibility and physical compatibility conditions of FG parabolic and circular panels at the common meridian of θ = 0 and 2π. The convergence and accuracy of the present method are verified by other contributors.

Findings

Some new results of FG panels and shells with elastic restraints, as well as different geometric and material parameters, are presented and the effects of the elastic restraint parameters, power-law exponent, circumference angle and power-law distributions on the free vibration characteristic of the panels are also presented, which can be served as benchmark data for the designers and engineers to avoid the unpleasant, inefficient and structurally damaging resonant.

Originality/value

The paper could provide the reference for the research about the moderately thick FG parabolic and circular panels and shells of revolution with general boundary conditions. In addition, the change of the boundary conditions can be easily achieved by just varying the stiffness of the boundary restraining springs along all the edges of panels without making any changes in the solution procedure.

Book part
Publication date: 18 August 2022

Zheng Wang

In an urbanising world, neighbouring is perceived to be steadily losing significance and a remnant of the past. The same belief can also be found in China where rapid urbanisation…

Abstract

In an urbanising world, neighbouring is perceived to be steadily losing significance and a remnant of the past. The same belief can also be found in China where rapid urbanisation has had a tremendous impact on the social networks and neighbourhood life of urban residents. This chapter challenges the common perception of neighbouring in demise and argues that neighbouring remains an important form of social relationship, even if the meanings and role of neighbouring have changed. This chapter first charts the changing role of neighbouring from the socialist era to post-reform China. It then provides an account of four common types of neighbourhoods in Chinese cities – work-unit estates, traditional courtyards, commodity housing estates and urban villages – and considers how and why neighbouring in different ways still matters to them. In pre-reform socialist China, neighbourhood life and neighbouring comprised much of the daily social life of residents. Since the reform era, with the proliferation of private commodity housing estates, middle-class residents prioritise comfort, security and privacy, such that neighbouring levels have subsided. Nevertheless, in other neighbourhood types, such as work-unit housing estates, traditional courtyards and urban villages, neighbours still rely upon one another for various reasons.

Details

Neighbours Around the World: An International Look at the People Next Door
Type: Book
ISBN: 978-1-80043-370-0

Keywords

Article
Publication date: 23 November 2020

Zhou Haitao, Haibo Feng, Li Xu, Songyuan Zhang and Yili Fu

The purpose of this paper is to improve control performance and safety of a real two-wheeled inverted pendulum (TWIP) robot by dealing with model uncertainty and motion…

Abstract

Purpose

The purpose of this paper is to improve control performance and safety of a real two-wheeled inverted pendulum (TWIP) robot by dealing with model uncertainty and motion restriction simultaneously, which can be extended to other TWIP robotic systems.

Design/methodology/approach

The inequality of lumped model uncertainty boundary is derived from original TWIP dynamics. Several motion restriction conditions are derived considering zero dynamics, centripedal force, ground friction condition, posture stability, control torque limitation and so on. Sliding-mode control (SMC) and model predictive control (MPC) are separately adopted to design controllers for longitudinal and rotational motion, while taking model uncertainty into account. The reference value of the moving velocity and acceleration, delivered to the designed controller, should be restricted in a specified range, limited by motion restrictions, to keep safe.

Findings

The cancelation of model uncertainty commonly existing in real system can improve control performance. The motion commands play an important role in maintaining safety and reliability of TWIP, which can be ensured by the proposed motion restriction to avoid potential movement failure, such as slipping, lateral tipping over because of turning and large fluctuation of body.

Originality/value

An inequation of lumped model uncertainty boundary incorporating comprehensive errors and uncertainties of system is derived and elaborately calculated to determine the switching coefficients of SMC. The motion restrictions for TWIP robot moving in 3D are derived and used to impose constraints on reference trajectory to avoid possible instability or failure of movement.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 June 2023

Gan Zhan, Zhenyu Zhang, Zhihua Chen, Tianzhen Li, Dong Wang, Jigang Zhan and Zhengang Yan

This paper aims to focus on the spatial docking task of unmanned vehicles under ground conditions. The docking task of military unmanned vehicle application scenarios has strict…

Abstract

Purpose

This paper aims to focus on the spatial docking task of unmanned vehicles under ground conditions. The docking task of military unmanned vehicle application scenarios has strict requirements. Therefore, how to design a docking robot mechanism to achieve accurate docking between vehicles has become a challenge.

Design/methodology/approach

In this paper, first, the docking mechanism system is described, and the inverse kinematics model of the docking robot based on Stewart is established. Second, the genetic algorithm-based optimization method for multiobjective parameters of parallel mechanisms including workspace volume and mechanism flexibility is proposed to solve the problem of multiparameter optimization of parallel mechanism and realize the docking of unmanned vehicle space flexibility. The optimization results verify that the structural parameters meet the design requirements. Besides, the static and dynamic finite element analysis are carried out to verify the structural strength and dynamic performance of the docking robot according to the stiffness, strength, dead load and dynamic performance of the docking robot. Finally, taking the docking robot as the experimental platform, experiments are carried out under different working conditions, and the experimental results verify that the docking robot can achieve accurate docking tasks.

Findings

Experiments on the docking robot that the proposed design and optimization method has a good effect on structural strength and control accuracy. The experimental results verify that the docking robot mechanism can achieve accurate docking tasks, which is expected to provide technical guidance and reference for unmanned vehicles docking technology.

Originality/value

This research can provide technical guidance and reference for spatial docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of over 56000