Search results

1 – 3 of 3
Open Access
Article
Publication date: 23 March 2023

Ahmed Attalah Hassan Al-Fhdawi and Adel Mashaan Rabee

The purpose of this study was to determine the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa.

Abstract

Purpose

The purpose of this study was to determine the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa.

Design/methodology/approach

Among 303 clinical and environmental samples 109 (61 + 48) isolates were identified as clinical and environmental P. aeruginosa isolates, respectively. Clinical samples were obtained from patients in the Al-Yarmouk hospital in Baghdad city, Iraq. Waste water from Al-Yarmouk hospital was used from site before treatment unit to collect environmental samples. The ability of producing biofilm at various pH levels was examined by microtiter plate and the prevalence of Alg D, Psl A and Pel A was determined by quantitative real time-polymerase chain reaction (qRT-PCR).

Findings

This study showed that the ability of clinical and environmental isolates to biofilm development was observed in 86.9% and 85.42% of clinical and environmental isolates, respectively. As well as, the environmental P. aeruginosa isolates showed the highest biofilm production at pH 7. Clinical isolates showed the highest genes expression of Alg D, Psl A and Pel A as compared to environmental isolates with pH change. In general, both clinical and environmental isolates formed biofilm and carried AlgD, PslA and PelA genes. Also, alkaline pH was favored for biofilm production.

Originality/value

There are very few studies done to find out the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa. This study is unique as it has highlighted the influence of environmental pH on the ability of clinical and environmental isolates to biofilm development and genes expression.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 14 February 2024

Qing Wang, Xuening Wang, Shaojing Sun, Litao Wang, Yan Sun, Xinyan Guo, Na Wang and Bin Chen

This study aims to study the distribution characteristics of antibiotic resistance in direct-eating food and analysis of Citrobacter freundii genome and pathogenicity. Residual…

Abstract

Purpose

This study aims to study the distribution characteristics of antibiotic resistance in direct-eating food and analysis of Citrobacter freundii genome and pathogenicity. Residual antibiotics and antibiotic resistance genes (ARGs) in the environment severely threaten human health and the ecological environment. The diseases caused by foodborne pathogenic bacteria are increasing daily, and the enhancement of antibiotic resistance of pathogenic bacteria poses many difficulties in the treatment of disease.

Design/methodology/approach

In this study, six fresh fruits and vegetable samples were selected for isolation and identification of culturable bacteria and analysis of antibiotic resistance. The whole genome of Citrobacter freundii isolated from cucumber was sequenced and analyzed by Oxford Nanopore sequencing.

Findings

The results show that 270 strains of bacteria were identified in 6 samples. From 12 samples of direct food, 2 kinds of probiotics and 10 kinds of opportunistic pathogens were screened. The proportion of Citrobacter freundii screened from cucumber was significantly higher than that from other samples, and it showed resistance to a variety of antibiotics. Whole genome sequencing showed that Citrobacter freundii was composed of a circular chromosome containing signal peptides, transmembrane proteins and transporters that could induce antibiotic efflux, indicating that Citrobacter freundii had strong adaptability to the environment. The detection of genes encoding carbohydrate active enzymes is more beneficial to the growth and reproduction of Citrobacter freundii in crops. A total of 29 kinds of ARGs were detected in Citrobacter freundii, mainly conferring resistance to fluoroquinolones, aminoglycosides, carbapenem, cephalosporins and macrolides. The main mechanisms are the change in antibiotic targets and efflux pumps, the change in cell permeability and the inactivation of antibiotics and the detection of virulence factors and ARGs, further indicating the serious risk to human health.

Originality/value

The detection of genomic islands and prophages increases the risk of horizontal transfer of virulence factors and ARGs, which spreads the drug resistance of bacteria and pathogenic bacteria more widely.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 November 2023

Lochan Singh and Vijay Singh Sharanagat

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up…

148

Abstract

Purpose

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up against sundry micro-/macro-environmental conditions. Assurance of food health and safety thus gained immense importance, for which bio-sensing technology proved very promising in the detection and quantification of food-borne pathogens. Considering the importance, different studies have been performed, and different biosensors have been developed. This study aims to summarize the different biosensors used for the deduction of food-borne pathogens.

Design/methodology/approach

The present review highlights different biosensors developed apropos to food matrices, factors governing their selection, their potential and applicability. The paper discusses some related key challenges and constraints and also focuses on the needs and future research prospects in this field.

Findings

The shift in consumers’ and industries’ perceptions directed the further approach to achieve portable, user and environmental friendly biosensing techniques. Despite of these developments, it was still observed that the comparison among the different biosensors and their categories proved tedious on a single platform; since the food matrices tested, pathogen detected or diagnosed, time of detection, etc., varied greatly and very few products have been commercially launched. Conclusively, a challenge lies in front of food scientists and researchers to maintain pace and develop techniques for efficiently catering to the needs of the food industry.

Research limitations/implications

Biosensors deduction limit varied with the food matrix, type of organism, material of biosensors’ surface, etc. The food matrix itself consists of complex substances, and various types of food are available in nature. Considering the diversity of food there is a need to develop a universal biosensor that can be used for all the food matrices for a pathogen. Further research is needed to develop a pathogen-specific biosensor that can be used for all the food products that may have accuracy to eliminate the traditional method of deduction.

Originality/value

The present paper summarized and categorized the different types of biosensors developed for food-borne pathogens.

Graphical abstract

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 3 of 3