Search results

1 – 3 of 3
Article
Publication date: 19 January 2024

Kenneth Lawani, Farhad Sadeghineko, Michael Tong and Mehmethan Bayraktar

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D…

71

Abstract

Purpose

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D laser scanning technologies. This case study integrated 3D laser point cloud scans with BIM to explore the effects of BIM adoption on ongoing construction project, whilst evaluating the utility of 3D laser scanning technology for producing structural 3D models by converting point cloud data (PCD) into BIM.

Design/methodology/approach

The primary data acquisition adopted the use of Trimble X7 laser scanning process, which is a set of data points in the scanned space that represent the scanned structure. The implementation of BIM with the 3D PCD to explore the precision and effectiveness of the construction processes as well as the as-built condition of a structure was precisely captured using the 3D laser scanning technology to recreate accurate and exact 3D models capable of being used to find and fix problems during construction.

Findings

The findings indicate that the integration of BIM and 3D laser scanning technology has the tendency to mitigate issues such as building rework, improved project completion times, reduced project cost, enhanced interdisciplinary communication, cooperation and collaboration amongst the project duty holders, which ultimately enhances the overall efficiency of the construction project.

Research limitations/implications

The acquisition of data using 3D laser scanner is usually conducted from the ground. Therefore, certain aspects of the building could potentially disturb data acquisition; for example, the gable and sections of eaves (fascia and soffit) could be left in a blind spot. Data acquisition using 3D laser scanner technology takes time, and the processing of the vast amount of data acquired is laborious, and if not carefully analysed, could result in errors in generated models. Furthermore, because this was an ongoing construction project, material stockpiling and planned construction works obstructed and delayed the seamless capture of scanned data points.

Originality/value

These findings highlight the significance of integrating BIM and 3D laser scanning technology in the construction process and emphasise the value of advanced data collection methods for effectively managing construction projects and streamlined workflows.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 July 2023

Muhammad Sami Ur Rehman, Muhammad Tariq Shafiq, Fahim Ullah and Khaled Galal Ahmed

The purpose of this study is to investigate the current construction progress monitoring (CPM) process in relation to the contractual obligations, how project management teams…

Abstract

Purpose

The purpose of this study is to investigate the current construction progress monitoring (CPM) process in relation to the contractual obligations, how project management teams carry out this activity in the field and why teams continue to adopt the current method. The study aims to provide a comprehensive understanding of the current monitoring process and its effectiveness, identify any shortcomings and propose recommendations for improvements that can lead to better project outcomes.

Design/methodology/approach

The study conducted semi-structured interviews with 28 construction management practitioners to explore their views on contractual requirements, traditional progress monitoring practices and advanced monitoring methods. Thematic analysis was used to identify existing processes, practices and incentives for advanced monitoring.

Findings

Standard construction contracts mandate current progress monitoring practices, which often rely on manual, document-centric and labor-intensive methods, leading to slow and erroneous progress reporting and project delays. Key barriers to adopting advanced tools include rigid contractual clauses, lack of incentives and the absence of reliable automated tools. A holistic automated approach that covers the entire CPM process, from planning to claim management, is needed as a viable alternative to traditional practices.

Research limitations/implications

The study's findings can inform researchers, stakeholders and decision-makers about the existing monitoring practices and contribute to enhancing project management practices.

Originality/value

The study identified contractually mandated progress monitoring processes, traditional methods of collecting, transferring, analyzing and dispensing progress-related information and potential incentives and points of departure towards technologically advanced methods.

Details

Built Environment Project and Asset Management, vol. 13 no. 6
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 17 November 2022

Asli Pelin Gurgun, Kerim Koc and Handan Kunkcu

Completing construction projects within the planned schedule has widely been considered as one of the major project success factors. This study investigates the use of…

1060

Abstract

Purpose

Completing construction projects within the planned schedule has widely been considered as one of the major project success factors. This study investigates the use of technologies to address delays in construction projects and aims to address three research questions (1) to identify the adopted technologies and proposed solutions in the literature, (2) to explore the reasons why the delays cannot be prevented despite disruptive technologies and (3) to determine the major strategies to prevent delays in construction projects.

Design/methodology/approach

In total, 208 research articles that used innovative technologies, methods, or tools to avoid delays in construction projects were investigated by conducting a comprehensive literature review. An elaborative content analysis was performed to cover the implemented technologies and their transformation, highlighted research fields in relation to selected technologies, focused delay causes and corresponding delay mitigation strategies and emphasized project types with specific delay causes. According to the analysis results, a typological framework with appropriate technological means was proposed.

Findings

The findings revealed that several tools such as planning, imaging, geo-spatial data collection, machine learning and optimization have widely been adopted to address specific delay causes. It was also observed that strategies to address various delay causes throughout the life cycle of construction projects have been overlooked in the literature. The findings of the present research underpin the trends and technological advances to address significant delay causes.

Originality/value

Despite the technological advancements in the digitalization era of Industry 4.0, many construction projects still suffer from poor schedule performance. However, the reason of this is questionable and has not been investigated thoroughly.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 3 of 3