Search results

1 – 10 of 378
Article
Publication date: 22 March 2024

Sanaz Khalaj Rahimi and Donya Rahmani

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on…

74

Abstract

Purpose

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on flight range. In HTDRP-DC, trucks can select and transport various drones to LDs to reduce deprivation time. This study estimates the nonlinear deprivation cost function using a linear two-piece-wise function, leading to MILP formulations. A heuristic-based Benders Decomposition approach is implemented to address medium and large instances. Valid inequalities and a heuristic method enhance convergence boundaries, ensuring an efficient solution methodology.

Design/methodology/approach

Research has yet to address critical factors in disaster logistics: minimizing the social and economic costs simultaneously and using drones in relief distribution; deprivation as a social cost measures the human suffering from a shortage of relief supplies. The proposed hybrid truck-drone routing problem minimizing deprivation cost (HTDRP-DC) involves distributing relief supplies to dispersed demand nodes with undamaged (LDs) or damaged (DNs) access roads, utilizing multiple trucks and diverse drones. A Benders Decomposition approach is enhanced by accelerating techniques.

Findings

Incorporating deprivation and economic costs results in selecting optimal routes, effectively reducing the time required to assist affected areas. Additionally, employing various drone types and their reuse in damaged nodes reduces deprivation time and associated deprivation costs. The study employs valid inequalities and the heuristic method to solve the master problem, substantially reducing computational time and iterations compared to GAMS and classical Benders Decomposition Algorithm. The proposed heuristic-based Benders Decomposition approach is applied to a disaster in Tehran, demonstrating efficient solutions for the HTDRP-DC regarding computational time and convergence rate.

Originality/value

Current research introduces an HTDRP-DC problem that addresses minimizing deprivation costs considering the vehicle’s arrival time as the deprivation time, offering a unique solution to optimize route selection in relief distribution. Furthermore, integrating heuristic methods and valid inequalities into the Benders Decomposition approach enhances its effectiveness in solving complex routing challenges in disaster scenarios.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 16 July 2024

Rabiatu Bonku, Faisal Alkaabneh and Lauren Berrings Davis

Inspired by a food bank distribution operation, this paper aims to study synchronized vehicle routing for equitable and effective food allocation. The primary goal is to improve…

236

Abstract

Purpose

Inspired by a food bank distribution operation, this paper aims to study synchronized vehicle routing for equitable and effective food allocation. The primary goal is to improve operational efficiency while ensuring equitable and effective food distribution among the partner agencies.

Design/methodology/approach

This study introduces a multiobjective Mixed Integer Programming (MIP) model aimed at addressing the complex challenge of effectively distributing food, particularly for food banks serving vulnerable populations in low-income urban and rural areas. The optimization approach described in this paper places a significant emphasis on social and economic considerations by fairly allocating food to food bank partner agencies while minimizing routing distance and waste. To assess the performance of the approach, this paper evaluates three distinct models, focusing on key performance measures such as effectiveness, equity and efficiency. The paper conducts a comprehensive numerical analysis using randomly generated data to gain insights into the trade-offs that arise and provide valuable managerial insights for food bank managers.

Findings

The results of the analysis highlight the models that perform better in terms of equity and effectiveness. Additionally, the results show that restocking the vehicles through the concept of synchronization improves the overall quantity of food allocation to partner agencies, thereby increasing accessibility.

Research limitations/implications

This paper contributes significantly to the literature on optimization approaches in the field of humanitarian logistics.

Practical implications

This study provides food bank managers with three different models, each with a multifaceted nature of trade-offs, to better address the complex challenges of food insecurity.

Social implications

This paper contributes significantly to social responsibility by enhancing the operational efficiency of food banks, ultimately improving their ability to serve communities in need.

Originality/value

To the best of the authors’ knowledge, this paper is the first to propose and analyze this new variant of vehicle routing problems in nonprofit settings.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 16 April 2024

Ali Beiki Ashkezari, Mahsa Zokaee, Erfan Rabbani, Masoud Rabbani and Amir Aghsami

Pre-positioning and distributing relief items are important parts of disaster management as it simultaneously considers activities from both pre- and post-disaster stages. This…

Abstract

Purpose

Pre-positioning and distributing relief items are important parts of disaster management as it simultaneously considers activities from both pre- and post-disaster stages. This study aims to address this problem with a novel mathematical model.

Design/methodology/approach

In this research, a bi-objective mixed-integer linear programming model is developed to tackle pre-positioning and distributing relief items, and it is formulated as an integrated location-allocation-routing problem with uncertain parameters. The humanitarian supply chain consists of relief facilities (RFs) and demand points (DPs). Perishable and imperishable relief commodities (RCs), different types of vehicles, different transportation modes, a time window for delivering perishable commodities and the occurrence of unmet demand are considered. A scenario-based game theory is applied for purchasing RCs from different suppliers and an integrated best-worst method-technique for order of preference by similarity to ideal solution technique is implemented to determine the importance of DPs. The proposed model is used to solve several random test problems for verification, and to validate the model, Iran’s flood in 2019 is investigated as a case study for which useful managerial insights are provided.

Findings

Managers can effectively adjust their preferences towards response time and total cost of the network and use sensitivity analysis results in their decisions.

Originality/value

The model locates RFs, allocates DPs to RFs in the pre-disaster stage, and determines the routing of RCs from RFs to DPs in the post-disaster stage with respect to minimizing total costs and response time of the humanitarian logistics network.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 13 June 2024

Seyed Mohammad Hadi Baghdadi, Ehsan Dehghani, Mohammad Hossein Dehghani Sadrabadi, Mahdi Heydari and Maryam Nili

Spurred by the high turnover in the pharmaceutical industry, locating pharmacies inside urban areas along with the high product perishability in this industry, the pharmaceutical…

Abstract

Purpose

Spurred by the high turnover in the pharmaceutical industry, locating pharmacies inside urban areas along with the high product perishability in this industry, the pharmaceutical supply chain management has recently gained increasing attention. Accordingly, this paper unveils an inventory-routing problem for designing a pharmaceutical supply chain with perishable products and time-dependent travel time in an uncertain environment.

Design/methodology/approach

In this study, mathematical programming is employed to formulate a multi-graph network affected by the traffic volume in order to adapt to real-world situations. Likewise, by transforming the travel speed function to the travel time function using a step-by-step algorithm, the first-in-first-out property is warranted. Moreover, the Box–Jenkins forecasting method is employed to diminish the demand uncertainty.

Findings

An appealing result is that the delivery horizon constraint in the under-study multi-graph network may eventuate in selecting a longer path. Our analysis also indicates that the customers located in the busy places in the city are not predominantly visited in the initial and last delivery horizon, which are the rush times. Moreover, it is concluded that integrating disruption management, routing planning and inventory management in the studied network leads to a reduction of costs in the long term.

Originality/value

Applying the time-dependent travel time with a heterogeneous fleet of vehicles on the multi-graph network, considering perishability in the products for reducing inventory costs, considering multiple trips of transfer fleet, considering disruption impacts on supply chain components and utilizing the Box–Jenkins method to reduce uncertainty are the contributions of the present study.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 June 2024

Xiaoshuai Peng, Shoufeng Ji, Lele Zhang, Russell G. Thompson and Kangzhou Wang

Modular capacity units enable rapid reconfiguration, providing tactical flexibility to efficiently meet customer demand during disruptions and ensuring sustainability. Moreover…

Abstract

Purpose

Modular capacity units enable rapid reconfiguration, providing tactical flexibility to efficiently meet customer demand during disruptions and ensuring sustainability. Moreover, the Physical Internet (PI) enhances the potential of modular capacity in addressing efficiency, sustainability, and resilience challenges. To evaluate the sustainability and resilience advantages of the PI-enabled reconfigurable modular system (PI-M system), this paper studies a PI-enabled sustainable and resilient production-routing problem with modular capacity.

Design/methodology/approach

We develop a multi-objective optimization model to assess the sustainability and resilience benefits of combining PI and modular capacity in a chemical industry case study. A hybrid solution approach, combining the augmented e-constraint method, construction heuristic, and hybrid adaptive large neighborhood search, is developed.

Findings

The experimental results reveal that the proposed solution approach is capable of obtaining better solutions than the Gurobi and the existing heuristic in a shorter running time. Moreover, compared with the traditional system, the PI only and traditional with modular capacity systems, PI-M system has significant advantages in both sustainability and resilience.

Originality/value

To the best of our knowledge, this study is the first to integrate the PI and modular capacity and investigate sustainability and resilience in the production-routing problem.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 30 June 2023

Hana Begić, Mario Galić and Uroš Klanšek

Ready-mix concrete delivery problem (RMCDP), a specific version of the vehicle routing problem (VRP), is a relevant supply-chain engineering task for construction management with…

Abstract

Purpose

Ready-mix concrete delivery problem (RMCDP), a specific version of the vehicle routing problem (VRP), is a relevant supply-chain engineering task for construction management with various formulations and solving methods. This problem can range from a simple scenario involving one source, one material and one destination to a more challenging and complex case involving multiple sources, multiple materials and multiple destinations. This paper presents an Internet of Things (IoT)-supported active building information modeling (BIM) system for optimized multi-project ready-mix concrete (RMC) delivery.

Design/methodology/approach

The presented system is BIM-based, IoT supported, dynamic and automatic input/output exchange to provide an optimal delivery program for multi-project ready-mix-concrete problem. The input parameters are extracted as real-time map-supported IoT data and transferred to the system via an application programming interface (API) into a mixed-integer linear programming (MILP) optimization model developed to perform the optimization. The obtained optimization results are further integrated into BIM by conventional project management tools. To demonstrate the features of the suggested system, an RMCDP example was applied to solve that included four building sites, seven eligible concrete plants and three necessary RMC mixtures.

Findings

The system provides the optimum delivery schedule for multiple RMCs to multiple construction sites, as well as the optimum RMC quantities to be delivered, the quantities from each concrete plant that must be supplied, the best delivery routes, the optimum execution times for each construction site, and the total minimal costs, while also assuring the dynamic transfer of the optimized results back into the portfolio of multiple BIM projects. The system can generate as many solutions as needed by updating the real-time input parameters in terms of change of the routes, unit prices and availability of concrete plants.

Originality/value

The suggested system allows dynamic adjustments during the optimization process, andis adaptable to changes in input data also considering the real-time input data. The system is based on spreadsheets, which are widely used and common tool that most stakeholders already utilize daily, while also providing the possibility to apply a more specialized tool. Based on this, the RMCDP can be solved using both conventional and advanced optimization software, enabling the system to handle even large-scale tasks as necessary.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 May 2024

Malleswari Karanam, Lanka Krishnanand, Vijaya Kumar Manupati and Sai Sudhakar Nudurupati

The primary goal of this review is to identify emerging themes in the cold supply chain (CSC) and their future research directions, methodologies, and theories.

Abstract

Purpose

The primary goal of this review is to identify emerging themes in the cold supply chain (CSC) and their future research directions, methodologies, and theories.

Design/methodology/approach

The review looks at CSC related articles from Scopus database published in the years 2000–2020. Thereafter, bibliometric and co-citation analyses have been conducted to identify emerging themes, methodologies, and theoretical perspectives related to CSC management.

Findings

This study revealed a clear research gap in CSC literature with emerging themes relevant to diverse aspects. Primarily, the most prominent authors, methodologies, and theories were identified from bibliometric analysis. Next, we generated clusters to identify the insights of each cluster using co-citation analysis. Consequently, the significance of clusters concerning the number of articles, theoretical frameworks, methodologies, and themes was recognized. Finally, a few future research questions regarding emerging themes have been identified.

Practical implications

The importance of co-citation and bibliometric analyses in studying the evolution of research over a definite time is emphasized in this work. As per emerging themes, implementing digital technologies has increased the efficiency of traditional CSC and transformed it into digital CSC.

Originality/value

As per the authors' knowledge, this work is the first in literature to explore the significance of identifying emerging areas and future research directions in managing CSC through literature review based on bibliometric and co-citation analysis.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 8 July 2024

Jessica Rodríguez-Pereira, Helena Ramalhinho and Paula Sarrà

The planning of massive vaccination campaigns often falls to nongovernmental organizations that have to face the critical challenge of vaccinating the largest number of people in…

Abstract

Purpose

The planning of massive vaccination campaigns often falls to nongovernmental organizations that have to face the critical challenge of vaccinating the largest number of people in the shortest time. This study aims to provide an easy tool for minimizing the duration of mass vaccination campaigns in rural and remote areas of developing countries.

Design/methodology/approach

This paper presents a linear mathematical model that combines location, scheduling and routing decisions that allows determining where to locate the vaccination centers, as well as the schedule/route that each medical team must follow to meet the target demand in the shortest time possible. In addition, the paper proposes an heuristic approach that can be integrated in a spreadsheet.

Findings

As the numerical experiments show, the proposed heuristic provides good solutions in a short time. Due to its simplicity and flexibility, the proposed approach allows decision-makers to analyze and evaluate several possible scenarios for decision-making by simply playing with input parameters.

Social implications

The integration of the heuristic approach in a spreadsheet provides a simple and efficient tool to help decision-makers while avoiding the need for large investments in information systems infrastructure by user organizations.

Originality/value

Motivated by a real-life problem and different from previous studies, the objective of the planning is to reduce the length of the vaccination campaigns with the available resources and ensure a target coverage instead of planning for minimizing costs or maximizing coverage. Furthermore, for helping implementation to practitioners, the heuristic can be solved in a spreadsheet.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

1958

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 10 September 2024

Liang Ren, Zerong Zhou, Yaping Fu, Ao Liu and Yunfeng Ma

This study aims to examine the impact of the decision makers’ risk preference on logistics routing problem, contributing to logistics behavior analysis and route integration…

Abstract

Purpose

This study aims to examine the impact of the decision makers’ risk preference on logistics routing problem, contributing to logistics behavior analysis and route integration optimization under uncertain environment. Due to the unexpected events and complex environment in modern logistics operations, the logistics process is full of uncertainty. Based on the chance function of satisfying the transportation time and cost requirements, this paper focuses on the fourth party logistics routing integrated optimization problem considering the chance preference of decision makers from the perspective of satisfaction.

Design/methodology/approach

This study used the quantitative method to investigate the relationship between route decision making and human behavior. The cumulative prospect theory is used to describe the loss, gain and utility function based on confidence levels. A mathematical model and an improved ant colony algorithm are employed to solve the problems. Numerical examples show the effectiveness of the proposed model and algorithm.

Findings

The study’s findings reveal that the dual-population improvement strategy enhances the algorithm’s global search capability and the improved algorithm can solve the risk model quickly, verifying the effectiveness of the improvement method. Moreover, the decision-maker is more sensitive to losses, and the utility obtained when considering decision-makers' risk attitudes is greater than that obtained when the decision-maker exhibits risk neutrality.

Practical implications

In an uncertain environment, the logistics decision maker’s risk preference directly affects decision making. Different parameter combinations in the proposed model could be set for decision-makers with different risk attitudes to fit their needs more accurately. This could help managers design effective transportation plans and improve service levels. In addition, the improved algorithm can solve the proposed problem quickly, stably and effectively, so as to help the decision maker to make the logistics path decision quickly according to the required confidence level.

Originality/value

Considering the uncertainty in logistics and the risk behavior of decision makers, this paper studies integrated routing problem from the perspective of opportunity preference. Based on the chance function of satisfying the transportation time and cost requirements, a fourth party logistics routing integrated optimization problem model considering the chance preference of decision makers is established. According to the characteristics of the problem, an improved dual-population ant colony algorithm is designed to solve the proposed model. Numerical examples show the effectiveness the proposed methods.

Details

Modern Supply Chain Research and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-3871

Keywords

1 – 10 of 378