Search results

1 – 10 of 858
Article
Publication date: 28 November 2018

Mojtaba Moshiri and Mehrdad T. Manzari

This paper aims to numerically study the compositional flow of two- and three-phase fluids in one-dimensional porous media and to make a comparison between several upwind and…

Abstract

Purpose

This paper aims to numerically study the compositional flow of two- and three-phase fluids in one-dimensional porous media and to make a comparison between several upwind and central numerical schemes.

Design/methodology/approach

Implicit pressure explicit composition (IMPEC) procedure is used for discretization of governing equations. The pressure equation is solved implicitly, whereas the mass conservation equations are solved explicitly using different upwind (UPW) and central (CEN) numerical schemes. These include classical upwind (UPW-CLS), flux-based decomposition upwind (UPW-FLX), variable-based decomposition upwind (UPW-VAR), Roe’s upwind (UPW-ROE), local Lax–Friedrichs (CEN-LLF), dominant wave (CEN-DW), Harten–Lax–van Leer (HLL) and newly proposed modified dominant wave (CEN-MDW) schemes. To achieve higher resolution, high-order data generated by either monotone upstream-centered schemes for conservation laws (MUSCL) or weighted essentially non-oscillatory (WENO) reconstructions are used.

Findings

It was found that the new CEN-MDW scheme can accurately solve multiphase compositional flow equations. This scheme uses most of the information in flux function while it has a moderate computational cost as a consequence of using simple algebraic formula for the wave speed approximation. Moreover, numerically calculated wave structure is shown to be used as a tool for a priori estimation of problematic regions, i.e. degenerate, umbilic and elliptic points, which require applying correction procedures to produce physically acceptable (entropy) solutions.

Research limitations/implications

This paper is concerned with one-dimensional study of compositional two- and three-phase flows in porous media. Temperature is assumed constant and the physical model accounts for miscibility and compressibility of fluids, whereas gravity and capillary effects are neglected.

Practical implications

The proposed numerical scheme can be efficiently used for solving two- and three-phase compositional flows in porous media with a low computational cost which is especially useful when the number of chemical species increases.

Originality/value

A new central scheme is proposed that leads to improved accuracy and computational efficiency. Moreover, to the best of authors knowledge, this is the first time that the wave structure of compositional model is investigated numerically to determine the problematic situations during numerical solution and adopt appropriate correction techniques.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 May 2023

Jackie Opfer, Miki Hondzo and V.R. Voller

The purpose of this study is to investigate the errors arising from the numerical treatment of model processes, paying particular attention to the impact of key system features…

Abstract

Purpose

The purpose of this study is to investigate the errors arising from the numerical treatment of model processes, paying particular attention to the impact of key system features including widely variable dispersion coefficients, spatiotemporal velocities of algal cells, and the aggregation of algae from single cells to large colonies. An advection–dispersion model has been presented to describe the vertical transport of colonial and motile harmful algae in a lake environment.

Design/methodology/approach

Model performance is examined for two different numerical treatments of the advective term: first-order upwind and quadratic upwind with a stability-preserving flux limiter (SMART). To determine how these schemes impact predictions, comparisons are made across a sequence of models with increasing complexity.

Findings

Using first-order upwinding for advection–dispersion calculations with a time oscillating velocity field leads to oscillatory numerical dispersion. Subjecting an initially uniform distribution of large-sized algal colonies to a spatiotemporal velocity creates a concentration pulse, which reaches a steady-state width at high-grid Peclet numbers when using the SMART scheme; the pulse exhibits contraction–expansion behavior throughout a velocity cycle at all Peclet numbers when using first-order upwinding. When aggregation dynamics are included with advection-dominated spatiotemporal transport, results indicate the SMART scheme predicts larger peak concentration values than those predicted by first-order upwind, but peak location and the time to large colony appearance remain largely unchanged between the two advective schemes.

Originality/value

To the best of the authors’ knowledge, this study is the first numerical investigation of a novel advection–dispersion model of vertical algal transport. In addition, a generalized expression for the effective dispersion coefficient of temporally variable flow fields is presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 1995

E. Dick and J. Steelant

A comparison of the accuracy of the central discretization scheme withartificial dissipation and the upwind flux‐difference TVD scheme has beenmade for the compressible…

Abstract

A comparison of the accuracy of the central discretization scheme with artificial dissipation and the upwind flux‐difference TVD scheme has been made for the compressible Navier‐Stokes equations for high Reynolds number flows. First, a comparison is made on two one‐dimensional model problems. Then the schemes are compared on flat plate boundary layer flow. It is shown that a central scheme basically has poor accuracy due to the isotropic nature of the artificial dissipation. An upwind scheme decomposes the flow into different components and adapts the dissipation to the velocity of the components. The associated ansitropic dissipation results in a good accuracy. It is further discussed how a central discretization scheme with artificial dissipation can be improved at the expense of the same complexity of an upwind scheme.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 1997

W.H. Sheu, Shi‐Min Lee and M.T. Wang

Deals with the non‐stationary pure convection equation in two dimensions. An attribute of the method is that the advective fluxes are approximated by taking the flow orientations…

Abstract

Deals with the non‐stationary pure convection equation in two dimensions. An attribute of the method is that the advective fluxes are approximated by taking the flow orientations into consideration. The interfacial numerical fluxes are interpolated by virtue of the rational areas which depend on the corner velocity vectors. This leads to a discrete system containing dissipative artifacts in regions normal to the local streamline. Conducts two‐dimensional fundamental studies for the flux discretization developed. These analyses give insight into the order‐of‐accuracy, and the scheme stability. According to the underlying positivity definition, this explicit scheme is, furthermore, classified as conditionally monotonic. This scheme has been applied successfully to solve smooth, sharply varied, and discontinuous transport problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2013

Nima Tajallipour, Vimal Kumar and Marius Paraschivoiu

The purpose of this paper is to investigate a large‐eddy simulation, using low order numerical discretization and upwinding schemes on unstructured grids, for a turbulent free jet…

Abstract

Purpose

The purpose of this paper is to investigate a large‐eddy simulation, using low order numerical discretization and upwinding schemes on unstructured grids, for a turbulent free jet at Mach number 0.95. The accuracy and stability performance is discussed for the finite element/volume upwinding numerical code used.

Design/methodology/approach

This code is equipped with a self‐adaptive upwinding method which has been previously developed to reduce the numerical dissipation of applied low order flux calculation on unstructured elements using Roe's scheme. Herein, this method is used to numerically investigate a high Reynolds, compressible turbulent free jet and compare the results with a recently published set of experimental data. The effect of grid size is also investigated. A reasonable good agreement with the experimental measurements is obtained.

Findings

Based on the results, it is concluded that the developed self‐adaptive upwinding scheme provides a considerably better emulation of the flow regime in comparison to the full‐upwinding scheme. Different case studies have been carried out to assess the performance of self‐adaptive upwinding method and the effect of the subgrid model.

Originality/value

This paper presents an original research on self‐adaptive upwinding scheme and the effect of the subgrid model on a compressible turbulent free jet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1992

B.P. LEONARD and SIMIN MOKHTARI

In 1982, Smith and Hutton published comparative results of several different convection‐diffusion schemes applied to a specially devised test problem involving…

Abstract

In 1982, Smith and Hutton published comparative results of several different convection‐diffusion schemes applied to a specially devised test problem involving near‐discontinuities and strong streamline curvature. First‐order methods showed significant artificial diffusion, whereas higher‐order methods gave less smearing but had a tendency to overshoot and oscillate. Perhaps because unphysical oscillations are more obvious than unphysical smearing, the intervening period has seen a rise in popularity of low‐order artificially diffusive schemes, especially in the numerical heat‐transfer industry. This paper presents an alternative strategy of using non‐artificially diffusive higher‐order methods, while maintaining strictly monotonic transitions through the use of simple flux‐limiter constraints. Limited third‐order upwinding is usually found to be the most cost‐effective basic convection scheme. Tighter resolution of discontinuities can be obtained at little additional cost by using automatic adaptive stencil expansion to higher order in local regions, as needed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1993

S. SOLTANI, K. MORGAN and J. PERAIRE

An upwind unstructured grid cell‐centred scheme for the solution of the compressible Euler and Navier‐Stokes equations in two dimensions is presented. The algorithm employs a…

Abstract

An upwind unstructured grid cell‐centred scheme for the solution of the compressible Euler and Navier‐Stokes equations in two dimensions is presented. The algorithm employs a finite volume formulation. Calculation of the inviscid fluxes is based on the approximate Riemann solver of Roe. Viscous fluxes are obtained from solution gradients computed by a variational recovery procedure. Higher order accuracy is achieved through performing a monotonic linear reconstruction of the solution over each cell. The steady state is obtained by a point implicit time integration of the unsteady equations using local time stepping. For supersonic inviscid flow an alternative space marching algorithm is proposed. This latter approach is applicable to supersonic flow fields containing regions of local subsonic flow. Numerical results are presented to show the performance of the proposed scheme for inviscid and viscous flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 17 September 2024

Y.F. Yap and J.C. Chai

This paper presents a Monotonic Unbounded Schemes Transformer (MUST) approach to bound/monotonize (remove undershoots and overshoots) unbounded spatial differencing schemes

Abstract

Purpose

This paper presents a Monotonic Unbounded Schemes Transformer (MUST) approach to bound/monotonize (remove undershoots and overshoots) unbounded spatial differencing schemes automatically, and naturally. Automatically means the approach (1) captures the critical cell Peclet number when an unbounded scheme starts to produce physically unrealistic solution automatically, and (2) removes the undershoots and overshoots as part of the formulation without requiring human interventions. Naturally implies, all the terms in the discretization equation of the unbounded spatial differencing scheme are retained.

Design/methodology/approach

The authors do not formulate new higher-order scheme. MUST transforms an unbounded higher-order scheme into a bounded higher-order scheme.

Findings

The solutions obtained with MUST are identical to those without MUST when the cell Peclet number is smaller than the critical cell Peclet number. For cell Peclet numbers larger than the critical cell Peclet numbers, MUST sets the nodal values to the limiter value which can be derived for the problem at-hand. The authors propose a way to derive the limiter value. The authors tested MUST on the central differencing scheme, the second-order upwind differencing scheme and the QUICK differencing scheme. In all cases tested, MUST is able to (1) capture the critical cell Peclet numbers; the exact locations when overshoots and undershoots occur, and (2) limit the nodal value to the value of the limiter values. These are achieved by retaining all the discretization terms of the respective differencing schemes naturally and accomplished automatically as part of the discretization process. The authors demonstrated MUST using one-dimensional problems. Results for a two-dimensional convection–diffusion problem are shown in Appendix to show generality of MUST.

Originality/value

The authors present an original approach to convert any unbounded scheme to bounded scheme while retaining all the terms in the original discretization equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2020

Swati Yadav and Pratima Rai

The purpose of this study is to construct and analyze a parameter uniform higher-order scheme for singularly perturbed delay parabolic problem (SPDPP) of convection-diffusion type…

Abstract

Purpose

The purpose of this study is to construct and analyze a parameter uniform higher-order scheme for singularly perturbed delay parabolic problem (SPDPP) of convection-diffusion type with a multiple interior turning point.

Design/methodology/approach

The authors construct a higher-order numerical method comprised of a hybrid scheme on a generalized Shishkin mesh in space variable and the implicit Euler method on a uniform mesh in the time variable. The hybrid scheme is a combination of simple upwind scheme and the central difference scheme.

Findings

The proposed method has a convergence rate of order O(N2L2+Δt). Further, Richardson extrapolation is used to obtain convergence rate of order two in the time variable. The hybrid scheme accompanied with extrapolation is second-order convergent in time and almost second-order convergent in space up to a logarithmic factor.

Originality/value

A class of SPDPPs of convection-diffusion type with a multiple interior turning point is studied in this paper. The exact solution of the considered class of problems exhibit two exponential boundary layers. The theoretical results are supported via conducting numerical experiments. The results obtained using the proposed scheme are also compared with the simple upwind scheme.

Article
Publication date: 20 January 2021

Subal Ranjan Sahu and Jugal Mohapatra

The purpose of this study is to provide a robust numerical method for a two parameter singularly perturbed delay parabolic initial boundary value problem (IBVP).

Abstract

Purpose

The purpose of this study is to provide a robust numerical method for a two parameter singularly perturbed delay parabolic initial boundary value problem (IBVP).

Design/methodology/approach

To solve the problem, the authors have used a hybrid scheme combining the midpoint scheme, the upwind scheme and the second-order central difference scheme for the spatial derivatives. The backward Euler scheme on a uniform mesh is used to approximate the time derivative. Here, the authors have used Shishkin type meshes for spatial discretization.

Findings

It is observed that the proposed method converges uniformly with almost second-order spatial accuracy with respect to the discrete maximum norm.

Originality/value

This paper deals with the numerical study of a two parameter singularly perturbed delay parabolic IBVP. To solve the problem, the authors have used a hybrid scheme combining the midpoint scheme, the upwind scheme and the second-order central difference scheme for the spatial derivatives. The backward Euler scheme on a uniform mesh is used to approximate the time derivative. The convergence analysis is carried out. It is observed that the proposed method converges uniformly with almost second-order spatial accuracy with respect to the discrete maximum norm. Numerical experiments illustrate the efficiency of the proposed scheme.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 858