Search results

1 – 7 of 7
Content available
Article
Publication date: 18 October 2011

406

Abstract

Details

Industrial Robot: An International Journal, vol. 38 no. 6
Type: Research Article
ISSN: 0143-991X

Open Access
Article
Publication date: 31 July 2019

Yitao Pan, Yuan Chen and Lin Li

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s…

1175

Abstract

Purpose

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s athletic ability, load capacity and rigidity, and to ensure the coordination of multi-modal motion.

Design/methodology/approach

First, based on the rotation transformation matrix and closed-loop constraint equation of the parallel trunk joint mechanism, the mathematical model of its inverse position solution is constructed. Then, the Jacobian matrix of velocity and acceleration is derived by time derivative method. On this basis, the stiffness matrix of the parallel trunk joint mechanism is derived on the basis of the principle of virtual work and combined with the deformation effect of the rope driving pair and the spring elastic restraint pair. Then, the eigenvalue distribution of the stiffness matrix and the global stiffness performance index are used as the stiffness evaluation index of the mechanism. In addition, the performance index of athletic dexterity is analyzed. Finally, the distribution map of kinematic dexterity and stiffness is drawn in the workspace by numerical simulation, and the influence of the introduced spring on the stiffness distribution of the parallel trunk joint mechanism is compared and analyzed. It is concluded that the stiffness in the specific direction of the parallel trunk joint mechanism can be improved, and the stiffness distribution can be improved by adjusting the spring elastic structure parameters of the rope-driven branch chain.

Findings

Studies have shown that the wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring has a great kinematic dexterity, load-carrying capacity and stiffness performance.

Research limitations/implications

The soft-mixed structure is not mature, and there are few new materials for the soft-mixed mixture; the rope and the rigid structure are driven together with a large amount of friction and hindrance factors, etc.

Practical implications

It ensures that the multi-motion mode hexapod mobile robot can meet the requirement of sufficient different stiffness for different motion postures through the parallel trunk joint mechanism, and it ensures that the multi-motion mode hexapod mobile robot in multi-motion mode can meet the performance requirement of global stiffness change at different pose points of different motion postures through the parallel trunk joint mechanism.

Social implications

The trunk structure is a very critical mechanism for animals. Animals in the movement to achieve smooth climbing, overturning and other different postures, such as centipede, starfish, giant salamander and other multi-legged animals, not only rely on the unique leg mechanism, but also must have a unique trunk joint mechanism. Based on the cooperation of these two mechanisms, the animal can achieve a stable, flexible and flexible variety of motion characteristics. Therefore, the trunk joint mechanism has an important significance for the coordinated movement of the whole body of the multi-sport mode mobile robot (Huang Hu-lin, 2016).

Originality/value

In this paper, based on the idea of combining rigid parallel mechanism with wire-driven mechanism, a trunk mechanism is designed, which is composed of four spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism in series. Its spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism can make the multi-motion mode mobile robot have better load capacity, mobility and stiffness performance (Qi-zhi et al., 2018; Cong-hao et al., 2018), thus improving the environmental adaptability and reliability of the multi-motion mode mobile robot.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Content available
Article
Publication date: 1 February 2001

B.H. Rudall

290

Abstract

Details

Kybernetes, vol. 30 no. 1
Type: Research Article
ISSN: 0368-492X

Content available
Article
Publication date: 22 June 2010

Honghai Liu

554

Abstract

Details

Industrial Robot: An International Journal, vol. 37 no. 4
Type: Research Article
ISSN: 0143-991X

Content available
Article
Publication date: 1 February 2003

Jon Rigelsford

62

Abstract

Details

Industrial Robot: An International Journal, vol. 30 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 18 June 2019

Martina Čaić, Dominik Mahr and Gaby Oderkerken-Schröder

The technological revolution in the service sector is radically changing the ways in which and with whom consumers co-create value. This conceptual paper considers social robots

15706

Abstract

Purpose

The technological revolution in the service sector is radically changing the ways in which and with whom consumers co-create value. This conceptual paper considers social robots in elderly care services and outlines ways in which their human-like affect and cognition influence users’ social perceptions and anticipations of robots’ value co-creation or co-destruction potential. A future research agenda offers relevant, conceptually robust directions for stimulating the advancement of knowledge and understanding in this nascent field.

Design/methodology/approach

Drawing from service, robotics and social cognition research, this paper develops a conceptual understanding of the value co-creation/destruction potential of social robots in services.

Findings

Three theoretical propositions construct an iterative framework of users’ evaluations of social robots in services. First, social robots offer users value propositions leveraging affective and cognitive resources. Second, users’ personal values become salient through interactions with social robots’ affective and cognitive resources. Third, users evaluate social robots’ value co-creation/destruction potential according to social cognition dimensions.

Originality/value

Social robots in services are an emerging topic in service research and hold promising implications for organizations and users. This relevant, conceptually robust framework advances scholarly understanding of their opportunities and pitfalls for realizing value. This study also identifies guidelines for service managers for designing and introducing social robots into complex service environments.

Details

Journal of Services Marketing, vol. 33 no. 4
Type: Research Article
ISSN: 0887-6045

Keywords

Open Access
Article
Publication date: 4 December 2020

Fangli Mou and Dan Wu

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further…

1149

Abstract

Purpose

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further applications and human–robot interaction in an unstructured open environment, fast and accurate tracking and strong disturbance rejection ability are required. However, utilizing a conventional controller can make it difficult for the robot to meet these demands, and when a robot is required to perform at a high-speed and large range of motion, conventional controllers may not perform effectively or even lead to the instability.

Design/methodology/approach

The main idea is to develop the control law by combining the SMC feedback with the ADRC control architecture to improve the robustness and control quality of a conventional SMC controller. The problem is formulated and solved in the framework of ADRC. For better estimation and control performance, a generalized proportional integral observer (GPIO) technique is employed to estimate and compensate for unmodeled dynamics and other unknown time-varying disturbances. And benefiting from the usage of GPIO, a new SMC law can be designed by synthesizing the estimation and its history.

Findings

The employed methodology introduced a significant improvement in handling the uncertainties of the system parameters without compromising the nominal system control quality and intuitiveness of the conventional ADRC design. First, the proposed method combines the advantages of the ADRC and SMC method, which achieved the best tracking performance among these controllers. Second, the proposed controller is sufficiently robust to various disturbances and results in smaller tracking errors. Third, the proposed control method is insensitive to control parameters which indicates a good application potential.

Originality/value

High-performance robot tracking control is the basis for further robot applications in open environments and human–robot interfaces, which require high tracking accuracy and strong disturbance rejection. However, both the varied dynamics of the system and rapidly changing nonlinear coupling characteristic significantly increase the control difficulty. The proposed method gives a new replacement of PID controller in robot systems, which does not require an accurate dynamic system model, is insensitive to control parameters and can perform promisingly for response rapidity and steady-state accuracy, as well as in the presence of strong unknown disturbances.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Only content I have access to

Year

Content type

1 – 7 of 7