Search results

1 – 10 of 964
Article
Publication date: 1 January 1992

ZHONG QIN and OLSON

A numerical method is developed for steady and unsteady turbulent flows with significant regions of separation. A finite element formulation of the Navier‐Stokes equations with a…

Abstract

A numerical method is developed for steady and unsteady turbulent flows with significant regions of separation. A finite element formulation of the Navier‐Stokes equations with a modified Baldwin‐Lomax eddy viscosity closure is used. The method of averaging is employed to obtain a periodic solution of unsteady flow. The formulation is tested on a problem of flow over a backward‐facing step and the results are compared with experimental and other numerical results. The gross features of both steady and unsteady flows are reasonably well predicted by the numerical analysis, at least for the limited range of parameters tested so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 November 2020

Eslam Ezzatneshan

Numerical simulations are performed for studying the vorticity dynamics of a dipole colliding with the wall in a bounded flow and the wake structure and separated flow properties…

Abstract

Purpose

Numerical simulations are performed for studying the vorticity dynamics of a dipole colliding with the wall in a bounded flow and the wake structure and separated flow properties past a circular cylinder at the values of Reynolds numbers.

Design/methodology/approach

The near wake statistics of separated fluid flows are investigated by using the lattice Boltzmann method (LBM) in a two-dimensional framework. A multi-block technique is applied to accurately resolve the flow characteristics by the grid refinement near the wall and preserve the stability of the numerical solution at relatively high Reynolds numbers.

Findings

The results show that the rolling-up of the boundary layer occurs due to the shear-layer instabilities near the surface which causes a boundary layer detachment from the wall and consequently leads to the formation of small-scale vortices. These shear-layer vortices shed at higher frequencies than the large-scale Strouhal vortices which result in small-scale high-frequency fluctuations in the velocity field in the very near wake. The present study also demonstrates that the efficiency of the multi-block LBM used for predicting the statistical features of flow problems is comparable with the solvers based on the Navier-Stokes equations.

Practical implications

Studying the separated flow characteristics in aerospace applications.

Originality/value

Applying a multi-block lattice Boltzmann method (LBM) for simulation of separated fluid flows at high-Reynolds numbers. Studying of the near wake statistics of unsteady separated fluid flows using the multi-block LBM. Comparison of flow characteristics obtained based on the LBM with those of reported based on the Navier-Stokes equations.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 June 2019

Natalia C. Roşca, Alin V. Roşca and Ioan Pop

The purpose of this paper is to theoretically investigate the unsteady separated stagnation-point flow and heat transfer past an impermeable stretching/shrinking sheet in a copper…

Abstract

Purpose

The purpose of this paper is to theoretically investigate the unsteady separated stagnation-point flow and heat transfer past an impermeable stretching/shrinking sheet in a copper (Cu)-water nanofluid using the mathematical nanofluid model proposed by Tiwari and Das.

Design/methodology/approach

A similarity transformation is used to reduce the governing partial differential equations to a set of nonlinear ordinary (similarity) differential equations which are then solved numerically using the function bvp4c from Matlab for different values of the governing parameters.

Findings

It is found that the solution is unique for stretching case; however, multiple (dual) solutions exist for the shrinking case.

Originality/value

The authors believe that all numerical results are new and original, and have not been published elsewhere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2001

A. Nakayama and K. Miyashita

An Unsteady Reynolds‐Averaged Navier‐Stokes (URANS) equation method has been applied to compute the flow over two‐dimensional smooth topography and compared with conventional RANS…

Abstract

An Unsteady Reynolds‐Averaged Navier‐Stokes (URANS) equation method has been applied to compute the flow over two‐dimensional smooth topography and compared with conventional RANS and large‐eddy simulation (LES) results. The URANS calculation with sufficient grid resolution near solid surface and an appropriate near‐wall model has been shown to simulate much of the large‐scale unsteadiness and some of the turbulent motion for flows with and without separation. Although the results with unadjusted model constants do not show an overwhelming improvement over a standard two‐equation model, it is demonstrated that it may be improved and, more importantly, can be generalized to a new simulation technique by refining the model, considering such factors as grid‐dependent length scales and by making a three‐dimensional calculation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2018

Arpan Das and Shaligram Tiwari

Growing application of micro aerial vehicle (MAV) sets in demand for accurate computations of low Reynolds number flows past their wings. The purpose of this study is to…

Abstract

Purpose

Growing application of micro aerial vehicle (MAV) sets in demand for accurate computations of low Reynolds number flows past their wings. The purpose of this study is to investigate the effect of unsteady freestream velocity or wind gust on a harmonically plunging symmetric NACA0012 airfoil at Re = 1,000. The influence of unsteady parameters, such as reduced frequency of plunging motion (0.25 < k < 1.5), non-dimensional plunging amplitude (ho = 0.2) and non-dimensional amplitude of wind gust (0.1 = λ = 0.4) has been studied.

Design/methodology/approach

Computations have been carried out using commercial software ANSYS Fluent 16.0. To incorporate the plunging motion, the entire reference frame is oscillating, and thereby, a source term is added in the Navier–Stokes equation.

Findings

The results have been presented in the form of streamlines, vorticity contours, lift and drag signals and their spectra. It is observed that the ratio of plunging frequency to gust frequency (f/fg) has strong influence on periodic characteristics of unsteady wake. It has also been observed that for a fixed plunging amplitude, an increase in value of k results into a change from positive drag to thrust.

Practical implications

The research has implications in the development of MAV.

Originality/value

This study is intended to get a better understanding of unsteady parameters associated with gusty flow in flapping wing applications and possible ways to alleviate its adverse effect on it.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 September 2017

David S. Martínez, Elisa Pescini, Maria Grazia De Giorgi and Antonio Ficarella

Reynolds number in small-size low-pressure turbines (LPT) can drop below 2.5 · 104 at high altitude cruise, which in turn can lead to laminar boundary layer separation on the…

Abstract

Purpose

Reynolds number in small-size low-pressure turbines (LPT) can drop below 2.5 · 104 at high altitude cruise, which in turn can lead to laminar boundary layer separation on the suction surface of the blades. The purpose of this paper is to investigate the potential of an alternate current (AC)-driven Single Dielectric Barrier Discharge Plasma Actuator (AC-SDBDPA) for boundary layer control on the suction side of a LPT blade, operating at a Reynolds number of 2 · 104.

Design/methodology/approach

Experimental and numerical analyses were conducted. The experimental approach comprised the actuator testing over a curved plate with a shape designed to reproduce the suction surface of a LPT blade. A closed loop wind tunnel was employed. Sinusoidal voltage excitation was tested. Planar velocity measurements were performed by laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). The device electrical power dissipation was also calculated. Computational fluid dynamics (CFD) simulations using OpenFOAM© were conducted, modelling the actuator effect as a body force calculated by the dual potential algebraic model. Unsteady RANS (Reynolds Averaged Navier-Stokes equations), also known as URANS approach, with the k-ε Lam-Bremhorst Low-Reynolds turbulence model was used.

Findings

The AC-SDBDPA operation brought to a reduction of the separation region; in particular, the boundary layer thickness and the negative velocity values decreased substantially. Moreover, the flow angle in both the main flow and in the boundary layer was reduced by the plasma control effect. The actuation brought to a reduction of the 17 per cent in the total pressure loss coefficient. The pressure coefficient and skin friction coefficient distributions indicated that under actuation the reattacnment point was displaced upstream, meaning that the flow separation was effectively controlled by the plasma actuation. Adopting slightly higher actuation parameters could bring to a full reattachment of the flow.

Practical implications

The work underlines the potentialities of an AC-SDBDPA to control separation in LPTs of aeroengines.

Originality/value

The present work sets a methodological framework, in which the validated procedure to obtain the body force model combined with CFD simulations can be used to study a configuration with multiple actuators allocated in array without requiring further experiments.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 December 2000

Jaime Alvarez, Mirko Pap and Alvaro Valencia

This work numerically investigates the effects of two square bars placed in various arrangements in a channel on pressure drop and heat transfer. Tandem arrangements and the two…

Abstract

This work numerically investigates the effects of two square bars placed in various arrangements in a channel on pressure drop and heat transfer. Tandem arrangements and the two bars arranged side by side to the approaching flow are considered. The separation distance between the bars is varied in both types of arrangements. The Reynolds number Re based on channel height is 104, whereas the bar height to channel height (d/H) is 0.152. The channel walls are subjected to a constant wall temperature. The k‐ε turbulence model was used in conjunction with the Reynolds‐averaged momentum and energy equations for the simulations. A finite volume technique with staggered grids combined with the SIMPLEC algorithm is applied with a fine grid resolution. Results show that the local and global Nusselt numbers on the channel walls are strongly increased by the unsteady vortex shedding induced by the bars.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2006

V. Ramesh, S. Vengadesan and J.L. Narasimhan

To perform 3D unsteady Reynolds Averaged Navier‐Stokes (URANS) simulations to predict turbulent flow over bluff body.

1319

Abstract

Purpose

To perform 3D unsteady Reynolds Averaged Navier‐Stokes (URANS) simulations to predict turbulent flow over bluff body.

Design/methodology/approach

Turbulence closure is achieved through a non‐linear kε model. This model is incorporated in commercial FLUENT software, through user defined functions (UDF).

Findings

The study shows that the present URANS with standard wall functions predicts all the major unsteady phenomena, with a good improvement over other URANS reported so far, which incorporate linear eddy viscosity models. The results are also comparable with those obtained by LES for the same test case.

Originality/value

When comparing the computational time required by the present model and by LES, the accuracy achieved is significant and can be used for simulating 3D unsteady complex engineering flows with reasonable success.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2019

Sagar Saroha, Sawan S. Sinha and Sunil Lakshmipathy

In recent years, the partially averaged Navier–Stokes (PANS) methodology has earned acceptability as a viable scale-resolving bridging method of turbulence. To further enhance its…

Abstract

Purpose

In recent years, the partially averaged Navier–Stokes (PANS) methodology has earned acceptability as a viable scale-resolving bridging method of turbulence. To further enhance its capabilities, especially for simulating separated flows past bluff bodies, this paper aims to combine PANS with a non-linear eddy viscosity model (NLEVM).

Design/methodology/approach

The authors first extract a PANS closure model using the Shih’s quadratic eddy viscosity closure model [originally proposed for Reynolds-averaged Navier–Stokes (RANS) paradigm (Shih et al., 1993)]. Subsequently, they perform an extensive evaluation of the combination (PANS + NLEVM).

Findings

The NLEVM + PANS combination shows promising result in terms of reduction of the anisotropy tensor when the filter parameter (fk) is reduced. Further, the influence of PANS filter parameter f on the magnitude and orientation of the non-linear part of the stress tensor is closely scrutinized. Evaluation of the NLEVM + PANS combination is subsequently performed for flow past a square cylinder at Reynolds number of 22,000. The results show that for the same level of reduction in fk, the PANS + NLEVM methodology releases significantly more scales of motion and unsteadiness as compared to the traditional linear eddy viscosity model (LEVM) of Boussinesq (PANS + LEVM). The authors further demonstrate that with this enhanced ability the NLEVM + PANS combination shows much-improved predictions of almost all the mean quantities compared to those observed in simulations using LEVM + PANS.

Research limitations/implications

Based on these results, the authors propose the NLEVM + PANS combination as a more potent methodology for reliable prediction of highly separated flow fields.

Originality/value

Combination of a quadratic eddy viscosity closure model with PANS framework for simulating flow past bluff bodies.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2014

Immanuvel Paul, K. Arul Prakash and S. Vengadesan

The purpose of this paper is to study the effects of Angle of Attack (AOA), Axis Ratio (AR) and Reynolds number (Re) on unsteady laminar flow over a stationary elliptic cylinder…

Abstract

Purpose

The purpose of this paper is to study the effects of Angle of Attack (AOA), Axis Ratio (AR) and Reynolds number (Re) on unsteady laminar flow over a stationary elliptic cylinder.

Design/methodology/approach

The governing equations of fluid flow over the elliptic cylinder are solved numerically on a Cartesian grid using Projection method based Immersed Boundary technique. This numerical method is validated with the results available in open literature. This scheme eliminates the requirement of generating a new computational mesh upon varying any geometrical parameter such as AR or AOA, and thus reduces the computational time and cost.

Findings

Different vortex shedding patterns behind the elliptic cylinder are identified and classified using time averaged centerline streamwise velocity profile, instantaneous vorticity contours and instantaneous streamline patterns. A parameter space graph is constructed in order to reveal the dependence of AR, AOA and Re on vortex shedding. Integral parameters of flow such as mean drag, mean lift coefficients and Strouhal number are calculated and the effect of AR, AOA and Re on them is studied using various pressure and streamline contours. Functional relationships of each of integral parameters with respect to AR, AOA and Re are proposed with minimum percentage error.

Practical implications

The results obtained can be used to explain the characteristics of flow patterns behind slender to bluff elliptical cylinders which found applications in insect flight modeling, heat exchangers and energy conservation systems. The proposed functional relationships may be very useful for the practicing engineers in those fields.

Originality/value

The results presented in this paper are important for the researchers in the area of bluff body flow. The dependence of AOA on vortex shedding and flow parameters was never reported in the literature. These results are original, new and important.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 964