Search results

1 – 4 of 4
Article
Publication date: 6 July 2023

Iqra Masroor and Jamshed Aslam Ansari

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of…

Abstract

Purpose

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of operating frequencies. The purpose of this paper is to propose a novel compact and ultrawideband (UWB) microstrip patch antenna intended for high frequency wireless applications.

Design/methodology/approach

A square microstrip patch antenna was initially modeled on finite element method-based electromagnetic simulation tool high frequency structure simulator. It was then loaded with a rectangular slit and Koch snowflake-shaped fractal notches for bandwidth enhancement. The fabricated prototype was tested by using vector network analyzer from Agilent Technologies, N5247A, Santa Clara, California, United States (US).

Findings

The designed Koch fractal patch antenna is highly compact with dimensions of 10 × 10 mm only and possesses UWB characteristics with multiple resonances in the operating band. The −10 dB measured impedance bandwidth was observed to be approximately 13.65 GHz in the frequency range (23.20–36.85 GHz).

Originality/value

Owing to its simple and compact structure, positive and substantial gain values, high radiation efficiency and stable radiation patterns throughout the frequency band of interest, the proposed antenna is a suitable candidate for high frequency wireless applications in the K (18–27 GHz) and Ka (26.5–40 GHz) microwave bands.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 May 2024

Ahmed Taibi, Said Touati, Lyes Aomar and Nabil Ikhlef

Bearings play a critical role in the reliable operation of induction machines, and their failure can lead to significant operational challenges and downtime. Detecting and…

Abstract

Purpose

Bearings play a critical role in the reliable operation of induction machines, and their failure can lead to significant operational challenges and downtime. Detecting and diagnosing these defects is imperative to ensure the longevity of induction machines and preventing costly downtime. The purpose of this paper is to develop a novel approach for diagnosis of bearing faults in induction machine.

Design/methodology/approach

To identify the different fault states of the bearing with accurately and efficiently in this paper, the original bearing vibration signal is first decomposed into several intrinsic mode functions (IMFs) using variational mode decomposition (VMD). The IMFs that contain more noise information are selected using the Pearson correlation coefficient. Subsequently, discrete wavelet transform (DWT) is used to filter the noisy IMFs. Second, the composite multiscale weighted permutation entropy (CMWPE) of each component is calculated to form the features vector. Finally, the features vector is reduced using the locality-sensitive discriminant analysis algorithm, to be fed into the support vector machine model for training and classification.

Findings

The obtained results showed the ability of the VMD_DWT algorithm to reduce the noise of raw vibration signals. It also demonstrated that the proposed method can effectively extract different fault features from vibration signals.

Originality/value

This study suggested a new VMD_DWT method to reduce the noise of the bearing vibration signal. The proposed approach for bearing fault diagnosis of induction machine based on VMD-DWT and CMWPE is highly effective. Its effectiveness has been verified using experimental data.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 February 2023

Faten Hamad, Maha Al-Fadel and Ahmed Maher Khafaga Shehata

Technological advancement has forced academic libraries to change their traditional services and routines by adopting emerging technologies to respond to the changing information…

Abstract

Purpose

Technological advancement has forced academic libraries to change their traditional services and routines by adopting emerging technologies to respond to the changing information needs of their users who are now more technologically inclined and prefer to access information remotely and in a timely manner. Smart technologies are the recent trends in academic libraries. This research aims to investigate the level of smart information service implementation at academic libraries in Jordan. It also aimed to investigate the correlation between the level of smart information services offered by the libraries and the level of digital competencies among the library staff.

Design/methodology/approach

This research is designed using survey design to collect comprehensive information from the study participants. A questionnaire was disseminated to 340 respondents, and 246 questionnaires were returned and were suitable for analysis with a response rate of 72.4%.

Findings

The results indicated a moderate level of smart information service offered by academic libraries, as well as a moderate level of digital skills associated with the advocacy of smart information services. The results also indicated a strong and positive relationship between the level of smart information services at the investigated libraries and the level of digital competencies among the librarians.

Practical implications

The findings will help other academic libraries understand how to respond to the emergent change in users’ information-seeking behavior by understanding their available human resources competencies and the requirement to undergo this emergent change.

Originality/value

This paper provides insights and practical solutions for academic libraries in response to global information trends based on users’ behaviors. This research was conducted in Jordan as one of the developing countries and hence it provides insights of the situation there. It will help academic libraries in Jordan and the region to handle and cope with the challenges associated with technology acceptance based on its staff level of digital competencies. The contribution of this research that it was done in a developing country where progress in the filed can be considered slow because of many factors, mainly economics, where institutions focus on essential library objectives, which are information resources development and databases subscriptions.

Details

Global Knowledge, Memory and Communication, vol. 73 no. 4/5
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 13 October 2022

Arka Ghosh, Jemal Abawajy and Morshed Chowdhury

This study aims to provide an excellent overview of current research trends in the construction sector in digital advancements. It provides a roadmap to policymakers for the…

Abstract

Purpose

This study aims to provide an excellent overview of current research trends in the construction sector in digital advancements. It provides a roadmap to policymakers for the effective utilisation of emergent digital technologies and a need for a managerial shift for its smooth adoption.

Design/methodology/approach

A total of 3,046 peer-reviewed journal review articles covering Internet of Things (IoT), blockchain, building information modelling (BIM) and digital technologies within the construction sector were reviewed using scientometric mapping and weighted mind-map analysis techniques.

Findings

Prominent research clusters identified were: practice-factor-strategy, system, sustainability, BIM and construction worker safety. Leading countries, authors, institutions and their collaborative networks were identified with the UK, the USA, China and Australia leading this field of research. A conceptual framework for an IoT-based concrete lifecycle quality control system is provided.

Originality/value

The study traces the origins of the initial application of Industry 4.0 concepts in the construction field and reviews available literature from 1983 to 2021. It raises awareness of the latest developments and potential landscape realignment of the construction industry through digital technologies conceptual framework for an IoT-based concrete lifecycle quality control system is provided.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 4 of 4