Search results

1 – 10 of 301
Article
Publication date: 8 August 2008

J.G. Zheng, T.S. Lee and S.H. Winoto

The aim of the study is to present a piecewise parabolic method (PPM) for numerical simulation of barotropic and nonbarotropic two‐fluid flows in more than one space dimension.

Abstract

Purpose

The aim of the study is to present a piecewise parabolic method (PPM) for numerical simulation of barotropic and nonbarotropic two‐fluid flows in more than one space dimension.

Design/methodology/approach

In transition layers of two components, a fluid mixture model system is introduced. Besides, conserving the mass, momentum and energy for the mixture, the model is supplemented with an advection equation for the volume fraction of one of the two fluid components to recover the pressure and track interfaces. The Tait and stiffened gas equations of state are used to describe thermodynamic properties of the barotropic and nonbarotropic components, respectively. To close the model system, a mixture equation of state is derived. The classical third‐order PPM is extended to the two‐fluid case and used to solve the model system.

Findings

The feasibility of this method has been demonstrated by good results of sample applications. Each of the material interfaces is resolved with two grid cells and there is no any pressure oscillation on the interfaces.

Research limitations/implications

With the mixture model system, there may be energy gain or loss for the nonbarotropic component on the material interfaces.

Practical implications

The method can be applied to a wide range of practical problems.

Originality/value

The method is simple. It not only has the advantage of Lagrangian‐type schemes but also keeps the robustness of Eulerian schemes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 August 2022

Min Lu, Zixuan Yang and Guowei He

This paper aims to propose a new method for robust simulations of passive heat transfer in two-fluid flows with high volumetric heat capacity contrasts.

Abstract

Purpose

This paper aims to propose a new method for robust simulations of passive heat transfer in two-fluid flows with high volumetric heat capacity contrasts.

Design/methodology/approach

This paper implements a prediction–correction scheme to evolve the volumetric heat capacity. In the prediction substep, the volumetric heat capacity is evolved together with the temperature. The bounded downwind version of compressive interface capturing scheme for arbitrary meshes and central difference scheme are used for the spatial discretization of the advection and diffusion terms of the heat transfer equation, respectively. In the correction substep, the volumetric heat capacity is updated in accordance with the interface captured by using a coupled level-set and volume-of-fluid method to capture the interface dynamics precisely.

Findings

The proposed method is verified by simulating the advection of a hot droplet with high volumetric heat capacity, a stationary air–water tank with temperature variation between top and bottom walls and heat transfer during wave plunging at Re=108. The test results show that the proposed method is practical and accurate for simulating two-fluid heat transfer problems, especially for those feature high volumetric heat capacity contrasts.

Originality/value

To ensure the numerical stability, this paper solves an additional conservative form of volumetric heat capacity equation along with the conservative form of temperature equation by using consistent spatial-discretization and temporal-integration schemes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2006

Nawaf H. Saeid and K.N. Seetharamu

To study the thermal performance of both co‐current and counter‐current parallel flow heat exchangers. The hot stream is assumed to flow in the middle of two cold streams and…

1767

Abstract

Purpose

To study the thermal performance of both co‐current and counter‐current parallel flow heat exchangers. The hot stream is assumed to flow in the middle of two cold streams and exchange heat with them.

Design/methodology/approach

The dimensionless governing equations are derived based on the conservation of energy principle and solved using FEM based on subdomain collocation method and Galerkin's method. The results show that the subdomain collocation method is more accurate than the Galerkin's method, as observed when the results obtained are compared with the analytical results for the classical two‐fluid heat exchangers.

Findings

The results are presented in terms of effectiveness and number of transfer units (Ntu) for different values of the governing parameters. The governing parameters are the Ntu, the heat capacity ratios, the overall heat transfer coefficient ratio, and the inlet temperatures parameter. The results show that the effectiveness of the three‐fluid heat exchanger is always higher than that of classical two‐fluid flow heat exchanger for fixed values of the governing parameters. The results also show that for fixed values of the governing parameters, the effectiveness of the counter‐current is higher than the co‐current parallel flow three‐fluid heat exchangers.

Research limitations/implications

One‐dimensional governing equations are derived based on the conservation of energy principle. The ranges of the governing parameters are: Ntu (0:5), the heat capacity ratios (0:1,000), the overall heat transfer coefficient ratio (0:2), and the inlet temperatures parameter (0:1).

Practical implications

Both co‐current and counter‐current parallel flow heat exchangers are used in the thermal engineering applications. The design and performance analysis of these heat exchangers are of practical importance.

Originality/value

This paper provides the details of the performance analysis of co‐current and counter‐current parallel flow heat exchangers, which can be used in thermal design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2013

Xiang Wang, Guangya Zhu and Ke Li

The present study aims to resolve the adjustment problem of cavitation bubble number density in simulations of the cavitating flows within the diesel injection nozzle holes using…

Abstract

Purpose

The present study aims to resolve the adjustment problem of cavitation bubble number density in simulations of the cavitating flows within the diesel injection nozzle holes using a two-fluid cavitation model.

Design/methodology/approach

The basic rule that determines the variations of cavitation bubble number density has been checked through the scaling analysis of a two-fluid model under the assumption of hydrodynamic similarity of the cavitating flows. Moreover, a phenomenological model for the number density of cavitation bubbles that takes the hydrodynamic effect into account has been developed through the combined analysis of cavitation bubble dynamics and internal flow characteristics of diesel injection nozzle holes. This new model has also been validated by the discharge coefficient measures in a wide range of injection conditions.

Findings

The values of cavitation bubble number density must rationally match changes both in liquid quality effect and in hydrodynamic effect corresponding to different cavitating flows. The validation results show that the two-fluid cavitation model together with this new cavitation bubble number density model predicts well both the cavitation content inside the diesel nozzle hole and the relationship between discharge coefficient and cavitation number, and the new cavitation bubble number density model has the potential to further expand the application range of the two-fluid cavitation model.

Originality/value

This study provides insight into hydrodynamic effect corresponding to cavitating flows inside diesel nozzle holes and presents an idea to model the cavitation bubble number density phenomenologically. The model idea and the developed model are useful to researchers and engineers in the area of nozzle internal flow and cavitating flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 January 2024

Francesco Romanò, Mario Stojanović and Hendrik C. Kuhlmann

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the…

Abstract

Purpose

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the surrounding ambient gas.

Design/methodology/approach

Numerical solutions for the two-fluid model are computed covering a wide parametric space, making a total of 2,800 numerical flow simulations. Based on the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat transfer between the liquid and the gas is modeled by Newton’s heat transfer law, albeit with a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.

Findings

An explicit robust fit of Bi(z) is obtained covering the whole range of parameters considered. The single-fluid model together with the Biot function derived yields very accurate results at much lesser computational cost than the corresponding two-phase fully-coupled simulation required for the two-fluid model.

Practical implications

Using this novel Biot function approach instead of a constant Biot number, the critical Reynolds number can be predicted much more accurately within single-phase linear stability solvers.

Originality/value

The Biot function for thermocapillary liquid bridges is derived from the full multiphase problem by a robust multi-stage fit procedure. The derived Biot function reproduces very well the theoretical boundary layer scalings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Farhang Behrangi, Mohammad Ali Banihashemi, Masoud Montazeri Namin and Asghar Bohluly

This paper aims to present a novel numerical technique for solving the incompressible multiphase mixture model.

Abstract

Purpose

This paper aims to present a novel numerical technique for solving the incompressible multiphase mixture model.

Design/methodology/approach

The multiphase mixture model contains a set of momentum and continuity equations for the mixture phase, a second phase continuity equation and the algebraic equation for the relative velocity. For solving continuity equation for the second phase and advection term of momentum, an improved approach fine grid advection-multiphase mixture flow (FGA-MMF) is developed. In the FGA-MMF method, the continuity equation for the second phase is solved with higher-order schemes in a two times finer grid. To solve the advection term of the momentum equation, the advection fluxes of the volume fraction in the continuity equation for the second phase are used.

Findings

This approach has been used in various tests to simulate unsteady flow problems. Comparison between numerical results and experimental data demonstrates a satisfactory performance. Numerical examples show that this approach increases the accuracy and stability of the solution and decreases non-monotonic results.

Research limitations/implications

The solver for the multi-phase mixture model can only be adopted to solve the incompressible fluid flow.

Originality/value

The paper developed an innovative solution (FGA-MMF) to find multi-phase flow field value in the multi-phase mixture model. Advantages of the FGA-MMF technique are the ability to accurately determine the phases interpenetrating, decreasing the numerical diffusion of the interface and preventing instability and non-monotonicity in solution of large density variation problems.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2003

Nahidh Hamid Sharif and Nils‐Erik Wiberg

A numerical model is presented for the computation of unsteady two‐fluid interfaces in nonlinear porous media flow. The nonlinear Forchheimer equation is included in the…

Abstract

A numerical model is presented for the computation of unsteady two‐fluid interfaces in nonlinear porous media flow. The nonlinear Forchheimer equation is included in the Navier‐Stokes equations for porous media flow. The model is based on capturing the interface on a fixed mesh domain. The zero level set of a pseudo‐concentration function, which defines the interface between the two fluids, is governed by a time‐dependent advection equation. The time‐dependent Navier‐Stokes equations and the advection equation are spatially discretized by the finite element (FE) method. The fully coupled implicit time integration scheme and the explicit forward Eulerian scheme are implemented for the advancement in time. The trapezoidal rule is applied to the fully implicit scheme, while the operator‐splitting algorithm is used for the velocity‐pressure segregation in the explicit scheme. The spatial and time discretizations are stabilized using FE stabilization techniques. Numerical examples of unsteady flow of two‐fluid interfaces in an earth dam are investigated.

Details

Engineering Computations, vol. 20 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2004

A. Mitter, J.P. Malhotra and H.T. Jadeja

A modelling approach of gas solid flow, considering different physical phenomenon such as fluid turbulence, particle turbulence and interparticle collision effects are presented…

Abstract

A modelling approach of gas solid flow, considering different physical phenomenon such as fluid turbulence, particle turbulence and interparticle collision effects are presented. The approach is based on the two‐fluid model formulation where both phases are treated as continuum. This implies that the gas phase as well as the particle phase are weighted by their separate volumetric fractions. According to the experimental results and numerical simulations, the inter‐particle collision possesses a significant influence of turbulence level on particle transport properties in gas solid turbulent flow even for dispersed phase volume fraction (α<0.01). Comparisons in predictions have been depicted with inclusion of interparticle collision effect in the equation of particle turbulent kinetic energy and with exclusion of this effect. Experimental research has been conducted in a thermal power plant depicting higher erosion resistance of noncircular square sectioned coal pipe bends in comparison with those with circular cross section, the salient features of the experimental work are presented in this paper. Experiments have been conducted to determine, pressure drop in straight and curved portions of conduits conveying air coal mixtures in a thermal power plant. Validation of this experimental data with numerical predictions have been presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 October 2015

Zhiyi Yu, Baoshan Zhu and Shuliang Cao

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was…

2134

Abstract

Purpose

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was carried out within the framework of two-fluid model. The purpose of this paper is to clarify the relative importance of various interphase forces on the mixed transport process, and the findings herein will be a base for the future study on the mechanism of the gas blockage phenomenon, which is the most challenging issue for such pumps.

Design/methodology/approach

Four types of interphase forces, i.e. drag force, lift force, virtual mass force and turbulent dispersion force (TDF) were taken into account. By comparing with the experiment in the respect of the head performance, the effectiveness of the numerical model was validated. In conditions of different inlet gas void fractions, bubble diameters and rotational speeds, the magnitude analyses were made for the interphase forces.

Findings

The results demonstrate that the TDF can be neglected in the running of the multiphase rotodynamic pump; the drag force is dominant in the impeller region and the outlet extended region. The sensitivity analyses of the bubble diameter and the rotational speed were also performed. It is found that larger bubble size is accompanied by smaller predicted drag but larger predicted lift and virtual mass, while the increase of the rotational speed can raise all the interphase forces mentioned above.

Originality/value

This paper has revealed the magnitude information and the relative importance of the interphase forces in a multiphase rotodynamic pump.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2004

Sungcho Kim, Jaeyong Sung and Jongwook Choi

The two‐dimensional flow field is numerically investigated using a compact finite difference and a pseudo‐spectral method when two fluids with different physical properties are…

Abstract

The two‐dimensional flow field is numerically investigated using a compact finite difference and a pseudo‐spectral method when two fluids with different physical properties are mixing under gravity as well as flow rate. The gravity and the viscous mobility affect the fingering instability, i.e. the mixing range shrinks much at the large viscous mobility or the strong gravity. When the gravitation acts parallel to the main stream, the flow decelerates or accelerates according to its direction. The fingertip velocity is exactly expressed by a pure cosine function and especially invariant when the gravity acts along the −y direction at the high Peclet number. The maximum and fingertip velocities at the very low Peclet number are nearly symmetric with respect to the −y direction perpendicular to the main flow direction x. When the gravity acts along the −y direction, the flow field shows the asymmetry, and a pair of vortices is generated at both the very high Peclet number and less viscous mobility number. As the viscous mobility becomes large, the vortex scale enlarges at the small Peclet number, while the vortices are slightly destroyed at the relatively high Peclet number. As the gravitational angle changes clockwise from downstream to upstream, a pair of vortices evolves through a process of asymmetry.

Details

Engineering Computations, vol. 21 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 301