Search results

1 – 10 of over 13000
Article
Publication date: 12 February 2020

Oussama Adjoul, Khaled Benfriha and Améziane Aoussat

This paper proposes a new simultaneous optimization model of the industrial systems design and maintenance. This model aims to help the designer in searching for technical…

Abstract

Purpose

This paper proposes a new simultaneous optimization model of the industrial systems design and maintenance. This model aims to help the designer in searching for technical solutions and the product architecture by integrating the maintenance issues from the design stage. The goal is to reduce the life-cycle cost (LCC) of the studied system.

Design/methodology/approach

Literature indicates that the different approaches used in the design for maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and the maintainability of a multicomponent system as well as the modeling of the dynamic maintenance. This article proposes to go further in the optimization of the product, by simultaneously characterizing the design, in terms of reliability and maintainability, as well as the dynamic planning of the maintenance operations. This combinatorial characterization is performed by a two-level hybrid algorithm based on the genetic algorithms.

Findings

The proposed tool offers, depending on the life-cycle expectation, the desired availability, the desired business model (sales or rental), simulations in terms of the LCCs, and so an optimal product architecture.

Research limitations/implications

In this article, the term “design” is limited to reliability properties, possible redundancies, component accessibility (maintainability), and levels of monitoring information.

Originality/value

This work is distinguished by the use of a hybrid optimization algorithm (two-level computation) using genetic algorithms. The first level is to identify an optimal design configuration that takes into account the LCC criterion. The second level consists in proposing a dynamic and optimal maintenance plan based on the maintenance-free operating period (MFOP) concept that takes into account certain criteria, such as replacement costs or the reliability of the system.

Article
Publication date: 4 May 2012

Piotr Putek, Guillaume Crevecoeur, Marian Slodička, Roger van Keer, Ben Van de Wiele and Luc Dupré

The purpose of this paper is to solve an inverse problem of structure recognition arising in eddy current testing (ECT) – type NDT. For this purpose, the space mapping (SM…

Abstract

Purpose

The purpose of this paper is to solve an inverse problem of structure recognition arising in eddy current testing (ECT) – type NDT. For this purpose, the space mapping (SM) technique with an extraction based on the Gauss‐Newton algorithm with Tikhonov regularization is applied.

Design/methodology/approach

The aim is to have a computationally fast recognition procedure of defects since the monitoring results in a large amount of data points that need to be analyzed by 3D eddy current model. According to the SM optimization, the finite element method (FEM) is used as a fine model, while the model based on an integral method such as the volume integral method (VIM) serves as a coarse model. This approach, being an example of a twolevel optimization method, allows shifting the optimization load from a time consuming and accurate model to the less precise but faster coarse surrogate.

Findings

The application of this method enables shortening of the evaluation time that is required to provide the proper parameter estimation of surface defects.

Research limitations/implications

In this work only the specific kinds of surface defects were considered. Therefore, the reconstruction of arbitrary shapes of defects when using real measurement data from ECT system can be treated in further research.

Originality/value

The paper investigated the eddy current inverse problem. According to aggressive space mapping method, a suitable coarse model is needed. In this case, for the purpose of 3D defect reconstruction, the reduced VIM approach was applied. From a practical view point, the authors demonstrated that the twolevel inversion procedures allow saving of up to 50 percent CPU time in comparison with the optimization by means of regularized Gauss‐Newton algorithm in the same FE model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Ismaila Bayo Tijani, Rini Akmeliawati, Ari Legowo and Agus Budiyono

– The purpose of this paper is to develop a multiobjective differential evolution (MODE)-based extended H-infinity controller for autonomous helicopter control.

Abstract

Purpose

The purpose of this paper is to develop a multiobjective differential evolution (MODE)-based extended H-infinity controller for autonomous helicopter control.

Design/methodology/approach

Development of a MATLAB-based MODE suitable for controller synthesis. Formulate the H-infinity control scheme as an extended H-infinity loop shaping design procedure (H -LSDP) with incorporation of v-gap metric for robustness to parametric variation. Then apply the MODE-based algorithm to optimize the weighting function of the control problem formulation for optimal performance.

Findings

The proposed optimized H-infinity control was able to yield set of Pareto-controller candidates with optimal compromise between conflicting stability and time-domain performances required in autonomous helicopter deployment. The result of performance evaluation shows robustness to parameter variation of up to 20 per cent variation in nominal values, and in addition provides satisfactory disturbance rejection to wind disturbance in all the three axes.

Research limitations/implications

The formulated H-infinity controller is limited to hovering and low speed flight envelope. The optimization is focused on weighting function parameters for a given fixed weighting function structure. This thus requires a priori selection of weighting structures.

Practical implications

The proposed MODE-infinity controller algorithm is expected to ease the design and deployment of the robust controller in autonomous helicopter application especially for practicing engineer with little experience in advance control parameters tuning. Also, it is expected to reduce the design cycle involved in autonomous helicopter development. In addition, the synthesized robust controller will provide effective hovering/low speed autonomous helicopter flight control required in many civilian unmanned aerial vehicle (UAV) applications.

Social implications

The research will facilitate the deployment of low-cost, small-scale autonomous helicopter in various civilian applications.

Originality/value

The research addresses the challenges involved in selection of weighting function parameters for H-infinity control synthesis to satisfy conflicting stability and time-domain objectives. The problem of population initialization and objectives function computation in the conventional MODE algorithm are addressed to ensure suitability of the optimization algorithm in the formulated H-infinity controller synthesis.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 18 March 2019

Roland Eichardt, Daniel Strohmeier, Alexander Hunold, René Machts, Jens Haueisen, Gregor Oelsner, Christian B. Schmidt, Volkmar Schultze, Ronny Stolz and Uwe Graichen

The purpose of this paper is to present a simulation study using a model of a new optically pumped magnetometer sensor for application in the field of magnetoencephalography. The…

Abstract

Purpose

The purpose of this paper is to present a simulation study using a model of a new optically pumped magnetometer sensor for application in the field of magnetoencephalography. The effects of sensor distance and orientation on the measurement information and the sensitivity to neuronal sources are investigated. Further, this paper uses a combinatorial optimization approach for sensor placement to measure spontaneous activity in the region of the occipital cortex.

Design/methodology/approach

This paper studies the effects of sensor distance and orientation on sensitivity to cortical sources and measurement information. A three-compartment model of the head, using the boundary element method, is applied. For sensor setup optimization, a combinatorial optimization scheme is developed.

Findings

The sensor distance to sources considerably affects the sensitivity and the retrieved information. A specific arrangement of four sensors for measuring spontaneous activity over the occipital part of the head is optimized by effectively avoiding position conflicts.

Research limitations/implications

Individual head models, as well as more detailed noise and signal models, will increase the significance for specific-use cases in future studies.

Originality/value

Effects of sensor distance and orientation are specifically evaluated for a new optically pumped magnetometer. A discrete optimization scheme for sensor optimization is introduced. The presented methodology is applicable for other sensor characterization and optimization problems. The findings contribute significantly to the development of new sensors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 1 November 2007

Irina Farquhar and Alan Sorkin

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative…

Abstract

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative information technology open architecture design and integrating Radio Frequency Identification Device data technologies and real-time optimization and control mechanisms as the critical technology components of the solution. The innovative information technology, which pursues the focused logistics, will be deployed in 36 months at the estimated cost of $568 million in constant dollars. We estimate that the Systems, Applications, Products (SAP)-based enterprise integration solution that the Army currently pursues will cost another $1.5 billion through the year 2014; however, it is unlikely to deliver the intended technical capabilities.

Details

The Value of Innovation: Impact on Health, Life Quality, Safety, and Regulatory Research
Type: Book
ISBN: 978-1-84950-551-2

Article
Publication date: 13 January 2022

Himanshukumar Rajendrabhai Patel

Fuzzy-based metaheuristic algorithm is used to optimize the fuzzy controllers for the nonlinear level control system subject to uncertainty specially in the main actuator that has…

Abstract

Purpose

Fuzzy-based metaheuristic algorithm is used to optimize the fuzzy controllers for the nonlinear level control system subject to uncertainty specially in the main actuator that has lost effectiveness (LOE). To optimize the fuzzy controller, type-1 harmonic search (HS) and interval type-2 (HS) will be used.

Design/methodology/approach

The type-1 and type-2 fuzzy-based HS algorithms are designed for optimization of fuzzy controllers for Fault-Tolerant Control (FTC) applications, and this research proposes a fuzzy-based HS metaheuristic method. The performance of a fuzzy logic-based HS algorithm applied to a nonlinear two-tank level control process with a main actuator that has lost effectiveness (LOE) and also the same controller will be tested on DC motor angular position control with and without noise.

Findings

The key contribution of this work is the discovery of the best approach for generating an optimal vector of values for the fuzzy controller's membership function optimization. This is done in order to improve the controller's performance, bringing the process value of the two-tank level control process closer to the target process value (set point). It is worth noting that the type-1 fuzzy controller that has been optimized is an interval type-2 fuzzy system, which can handle more uncertainty than a type-1 fuzzy system.

Originality/value

The type-1 and type-2 fuzzy-based HS algorithms are designed for optimization of fuzzy controllers for FTC applications, and this research proposes a fuzzy-based HS metaheuristic method. The performance of a fuzzy logic-based HS algorithm applied to a nonlinear two-tank level control process with a main actuator that has LOE will be tested on DC motor angular position control with noise. Two nonlinear uncertain processes are used to demonstrate the effectiveness of the proposed control scheme.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 12 January 2023

Zhixiang Chen

The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more…

Abstract

Purpose

The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues.

Design/methodology/approach

Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case.

Findings

Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues.

Originality/value

The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 4 April 2008

Dunren Che and Wen‐Chi Hou

Efficient processing of XML queries is critical for XML data management and related applications. Previously proposed techniques are unsatisfactory. The purpose of this paper is…

Abstract

Purpose

Efficient processing of XML queries is critical for XML data management and related applications. Previously proposed techniques are unsatisfactory. The purpose of this paper is to present Determined – a new prototype system designed for XML query processing and optimization from a system perspective. With Determined, a number of novel techniques for XML query processing are proposed and demonstrated.

Design/methodology/approach

The methodology emphasizes on query pattern minimization, logic‐level optimization, and efficient query execution. Accordingly, three lines of investigation have been pursued in the context of Determined: XML tree pattern query (TPQ) minimization; logic‐level XML query optimization utilizing deterministic transformation; and specialized algorithms for fast XML query execution.

Findings

Developed and demonstrated were: a runtime optimal and powerful algorithm for XML TPQ minimization; a unique logic‐level XML query optimization approach that solely pursues deterministic query transformation; and a group of specialized algorithms for XML query evaluation.

Research limitations/implications

The experiments conducted so far are still preliminary. Further in‐depth, thorough experiments thus are expected, ideally carried out in the setting of a real‐world XML DBMS system.

Practical implications

The techniques/approaches proposed can be adapted to real‐world XML database systems to enhance the performance of XML query processing.

Originality/value

The reported work integrates various novel techniques for XML query processing/optimization into a single system, and the findings are presented from a system perspective.

Details

International Journal of Web Information Systems, vol. 4 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

1 – 10 of over 13000