Search results

1 – 4 of 4
Article
Publication date: 2 November 2018

Antonio Campo and Yunesky Masip

The purpose of this study is to address one-dimensional, unsteady heat conduction in a large plane wall exchanging heat convection with a nearby fluid under “small time”…

Abstract

Purpose

The purpose of this study is to address one-dimensional, unsteady heat conduction in a large plane wall exchanging heat convection with a nearby fluid under “small time” conditions.

Design/methodology/approach

The Transversal Method of Lines (TMOL) was used to reformulate the unsteady, one-dimensional heat conduction equation in the space coordinate and time into a transformed “quasi-steady”, one-dimensional heat conduction equation in the space coordinate housing the time as an embedded parameter. The resulting ordinary differential equation of second order with heat convection boundary conditions is solved analytically with the method of undetermined coefficients.

Findings

Semi-analytical TMOL dimensionless temperature profiles of compact form with/without regressed terms are obtained for the whole spectrum of Biot number (0 < Bi < ∞) in the “small time” sub-domain. In addition, a new “large time” sub-domain is redefined, that is, setting a smaller critical dimensionless time or critical Fourier number τcr = 0.18.

Originality/value

The computed dimensionless center, surface and mean temperature profiles in the large plane wall accounting for all Biot number (0 < Bi < ∞) in the “small time” sub-domain τ < τcr = 0.18 exhibit excellent quality while carrying reasonable relative errors for engineering applications. The exemplary level of accuracy indicates that the traditional evaluation of the center, surface and mean temperatures with the standard infinite series retaining a large number of terms is no longer necessary.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2014

Antonio Campo, Abraham J. Salazar, Diego J. Celentano and Marcos Raydan

The purpose of this paper is to address a novel method for solving parabolic partial differential equations (PDEs) in general, wherein the heat conduction equation constitutes an…

Abstract

Purpose

The purpose of this paper is to address a novel method for solving parabolic partial differential equations (PDEs) in general, wherein the heat conduction equation constitutes an important particular case. The new method, appropriately named the Improved Transversal Method of Lines (ITMOL), is inspired in the Transversal Method of Lines (TMOL), with strong insight from the method of separation of variables.

Design/methodology/approach

The essence of ITMOL revolves around an exponential variation of the dependent variable in the parabolic PDE for the evaluation of the time derivative. As will be demonstrated later, this key step is responsible for improving the accuracy of ITMOL over its predecessor TMOL. Throughout the paper, the theoretical properties of ITMOL, such as consistency, stability, convergence and accuracy are analyzed in depth. In addition, ITMOL has proven to be unconditionally stable in the Fourier sense.

Findings

In a case study, the 1-D heat conduction equation for a large plate with symmetric Dirichlet boundary conditions is transformed into a nonlinear ordinary differential equation by means of ITMOL. The numerical solution of the resulting differential equation is straightforward and brings forth a nearly zero truncation error over the entire time domain, which is practically nonexistent.

Originality/value

Accurate levels of the analytical/numerical solution of the 1-D heat conduction equation by ITMOL are easily established in the entire time domain.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 February 2020

J.I. Ramos

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise…

Abstract

Purpose

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise analytical solutions in space, compare it with other finite-difference discretizations and assess the effects of advection and reaction on both 1D and two-dimensional (2D) problems.

Design/methodology/approach

A conservative method of lines based on the piecewise analytical integration of the two-point boundary value problems that result from the local solution of the advection-diffusion operator subject to the continuity of the dependent variables and their fluxes at the control volume boundaries is presented. The method results in nonlinear first-order, ordinary differential equations in time for the nodal values of the dependent variables at three adjacent grid points and triangular mass and source matrices, reduces to the well-known exponentially fitted techniques for constant coefficients and equally spaced grids and provides continuous solutions in space.

Findings

The conservative method of lines presented here results in three-point finite difference equations for the nodal values, implicitly treats the advection and diffusion terms and is unconditionally stable if the reaction terms are implicitly treated. The method is shown to be more accurate than other three-point, exponentially fitted methods for nonlinear problems with interior and/or boundary layers and/or source/reaction terms. The effects of linear advection in 1D reacting flow problems indicates that the wave front steepens as it approaches the downstream boundary, whereas its back corresponds to a translation of the initial conditions; for nonlinear advection, the wave front exhibits steepening but the wave back shows a linear dependence on space. For a system of two nonlinearly coupled, 2D ADR equations, it is shown that a counter-clockwise rotating vortical field stretches the spiral whose tip drifts about the center of the domain, whereas a clock-wise rotating one compresses the wave and thickens its arms.

Originality/value

A new, conservative method of lines that implicitly treats the advection and diffusion terms and provides piecewise-exponential solutions in space is presented and applied to some 1D and 2D advection reactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 January 2023

Antonio Campo, Diego Celentano and Yunesky Masip

The purpose of this paper is to address unsteady heat conduction in two subsets of ordinary bodies. One subset consists of a large plane wall, a long cylinder and a sphere in one…

Abstract

Purpose

The purpose of this paper is to address unsteady heat conduction in two subsets of ordinary bodies. One subset consists of a large plane wall, a long cylinder and a sphere in one dimension. The other subset consists of a short cylinder and a large rectangular bar in two dimensions. The prevalent assumptions in the two subsets are: constant initial temperature, uniform surface heat flux and thermo-physical properties invariant with temperature. The engineering applications of the unsteady heat conduction deal with the determination of temperature–time histories in the two subsets using electric resistance heating, radiative heating and fire pool heating.

Design/methodology/approach

To this end, a novel numerical procedure named the enhanced method of discretization in time (EMDT) transforms the linear one-dimensional unsteady, heat conduction equations with non-homogeneous boundary conditions into equivalent nonlinear “quasi–steady” heat conduction equations having the time variable embedded as a time parameter. The equivalent nonlinear “quasi–steady” heat conduction equations are solved with a finite difference method.

Findings

Based on the numerical computations, it is demonstrated that the approximate temperature–time histories in the simple subset of ordinary bodies (large plane wall, long cylinder and sphere) exhibit a perfect matching over the entire time domain 0 < t < ∞ when compared against the rigorous exact temperature–time histories expressed by classical infinite series. Furthermore, using the method of superposition of solutions in the convoluted subset (short cylinder and large rectangular crossbar), the same level of agreement in the approximate temperature–time histories in the simple subset of ordinary bodies is evident.

Originality/value

The performance of the proposed EMDT coupled with a finite difference method is exhaustively assessed in the solution of the unsteady, one-dimensional heat conduction equations with prescribed surface heat flux for: a subset of one-dimensional bodies (plane wall, long cylinder and spheres) and a subset of two-dimensional bodies (short cylinder and large rectangular bar).

1 – 4 of 4