Search results

1 – 10 of 931
Article
Publication date: 23 June 2023

Sílvio Aparecido Verdério Júnior, Pedro J. Coelho, Vicente Luiz Scalon and Santiago del Rio Oliveira

The purpose of this study is to numerically and experimentally investigate the natural convection heat transfer in flat plates and plates with square, trapezoidal and triangular…

Abstract

Purpose

The purpose of this study is to numerically and experimentally investigate the natural convection heat transfer in flat plates and plates with square, trapezoidal and triangular corrugations.

Design/methodology/approach

This work is an extension of the previous studies by Verderio et al. (2021a, 2021b, 2021c, 2021d, 2022a). An experimental apparatus was built to measure the plates’ temperatures during the natural convection cooling process. Several physical parameters were evaluated through the experimental methodology. Free and open-source computational tools were used to simulate the experimental conditions and to quantitatively and qualitatively evaluate the thermal plume characteristics over the plates.

Findings

The numerical results were experimentally validated with reasonable accuracy in the range of studied RaLP for the different plates. Empirical correlations of Nu¯LPexp=f(RaLP), h¯conv=f(RaLP) and Nu¯LPexp(A/AP)=f(RaLP), with good accuracy and statistical representativeness, were obtained for the studied geometries. The convective thermal efficiency of corrugated plates (Δη), as a function of RaLP, was also experimentally studied quantitatively. In agreement with the findings of Oosthuizen and Garrett (2001), the experimental and numerical results proved that the increase in the heat exchange area of the corrugations has a greater influence on the convective exchange and the thermal efficiency than the disturbances caused in the flow (which reduce h¯conv). The plate with trapezoidal corrugations presented the highest convective thermal efficiency, followed by the plates with square and triangular corrugations. It was also proved that the thermal efficiency of corrugated plates increases with RaLP.

Practical implications

The results demonstrate that corrugated surfaces have greater thermal efficiency than flat plates in heating and/or cooling systems by natural convection. This way, corrugated plates can reduce the dependence on auxiliary forced convection systems, with application in technological areas and Industry 4.0.

Originality/value

The empirical correlations obtained for the corrected Nusselt number and thermal efficiency for the corrugated plate geometries studied are original and unpublished, as well as the experimental validation of the developed three-dimensional numerical code.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2018

Antonio Campo and Yunesky Masip

The purpose of this study is to address one-dimensional, unsteady heat conduction in a large plane wall exchanging heat convection with a nearby fluid under “small time”…

Abstract

Purpose

The purpose of this study is to address one-dimensional, unsteady heat conduction in a large plane wall exchanging heat convection with a nearby fluid under “small time” conditions.

Design/methodology/approach

The Transversal Method of Lines (TMOL) was used to reformulate the unsteady, one-dimensional heat conduction equation in the space coordinate and time into a transformed “quasi-steady”, one-dimensional heat conduction equation in the space coordinate housing the time as an embedded parameter. The resulting ordinary differential equation of second order with heat convection boundary conditions is solved analytically with the method of undetermined coefficients.

Findings

Semi-analytical TMOL dimensionless temperature profiles of compact form with/without regressed terms are obtained for the whole spectrum of Biot number (0 < Bi < ∞) in the “small time” sub-domain. In addition, a new “large time” sub-domain is redefined, that is, setting a smaller critical dimensionless time or critical Fourier number τcr = 0.18.

Originality/value

The computed dimensionless center, surface and mean temperature profiles in the large plane wall accounting for all Biot number (0 < Bi < ∞) in the “small time” sub-domain τ < τcr = 0.18 exhibit excellent quality while carrying reasonable relative errors for engineering applications. The exemplary level of accuracy indicates that the traditional evaluation of the center, surface and mean temperatures with the standard infinite series retaining a large number of terms is no longer necessary.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 July 2021

Hosein Shaker, Mohsen Izadi, Ehsanolah Assareh, Sabir Ali Shehzad and Mikhail Sheremet

This study aims to use the thermal non-equilibrium approach to inquire the entropy production and conjugate natural heat exchange in a porous medium. Entropy generation is studied…

Abstract

Purpose

This study aims to use the thermal non-equilibrium approach to inquire the entropy production and conjugate natural heat exchange in a porous medium. Entropy generation is studied separately for the solid matrix and the hybrid nanoliquid.

Design/methodology/approach

The characteristic equations are unraveled by applying the finite element method. Mathematical relations are used to calculate the generated entropy for the hybrid nanoliquid and matrix structure.

Findings

Based on the results, the produced entropy and the viscous friction term associated with the hybrid nanoliquid phase are not affected by increasing the thermal conductivity ratio of the rigid wall to nanoliquid. Moreover, a higher amount of entropy is generated by the thermal gradients in the hybrid nanoliquid phase compared to the solid matrix.

Originality/value

No investigation in the literature has been reported in this context.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1992

M.A.I. EL‐SHAARAWI and M.A. AL‐ATTAS

A finite‐difference scheme is developed for solving the boundary layer equations governing the unsteady laminar free convection flow in open ended vertical concentric annuli. The…

Abstract

A finite‐difference scheme is developed for solving the boundary layer equations governing the unsteady laminar free convection flow in open ended vertical concentric annuli. The initial condition considered for the creation of the thermal transient corresponds to a step change in temperature at the inner annulus boundary while the outer wall is maintained adiabatic. Numerical results for a fluid of Pr = 0.7 in an annulus of radius ratio 0.5 are presented. The results show the developing velocity and pressure fields with respect to space and time. Also, the important relationship between the annulus height and the induced flow rate is presented for various values of the time parameter starting from quiescence to the final steady state.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 August 2020

Ali Belhocine and Oday Ibraheem Abdullah

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal…

Abstract

Purpose

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal analysis and the static structural sequentially with the coupled method. Computational fluid dynamics analysis will help the authors in the calculation of the values of the heat transfer (h) that will be exploited in the transient evolution of the brake disc temperatures. Finally, the model resolution allows the authors to visualize other important results of this research such as the deformations and the Von Mises stress on the disc, as well as the contact pressure of the brake pads.

Design/methodology/approach

A transient finite element analysis (FEA) model was developed to calculate the temperature distribution of the brake rotor with respect to time. A steady-state CFD model was created to obtain convective heat transfer coefficients (HTC) that were used in the FE model. Because HTCs are dependent on temperature, it was necessary to couple the CFD and FEA solutions. A comparison was made between the temperature of full and ventilated brake disc showing the importance of cooling mode in the design of automobile discs.

Findings

These results are quite in good agreement with those found in reality in the brake discs in service and those that may be encountered before in literature research investigations of which these will be very useful for engineers and in the design field in the vehicle brake system industry. These are then compared to experimental results obtained from literatures that measured ventilated discs surface temperatures to validate the accuracy of the results from this simulation model.

Originality/value

The novelty of the work is the application of the FEM to solve the thermomechanical problem in which the results of this analysis are in accordance with the realized and in the current life of the braking phenomenon and in the brake discs in service thus with the thermal gradients and the phenomena of damage observed on used discs brake.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2017

Jawali Umavathi, Jada Prathap Kumar, Ioan Pop and Murudappa Shekar

The purpose of this paper is to consider the problem of fully developed laminar mixed convection flow of a couple stress fluid in a vertical channel with the third-kind boundary…

Abstract

Purpose

The purpose of this paper is to consider the problem of fully developed laminar mixed convection flow of a couple stress fluid in a vertical channel with the third-kind boundary conditions in the presence or absence of heat source/sink effect.

Design/methodology/approach

Through proper choice of dimensionless variables, the governing equations are developed. These governing equations are solved analytically by the differential transform method and numerically by the Runge–Kutta shooting method. Analytical solutions for the velocity and temperature profiles for heat generation and absorption of the problem are reported.

Findings

The mass flow rate and Nusselt numbers at both the left and right channel walls on mixed convection parameter, Brinkman number, couple stress parameter and heat generation/absorption parameter for equal and unequal Biot numbers are presented. Favorable comparisons of special cases with previously published work are obtained. It is found that velocity, temperature, mass flow rate and Nusselt number decrease with couple stress parameter and increase with mixed convection parameter and Brinkman number.

Originality/value

The work done in this paper is not done earlier to the authors’ knowledge. This is the first paper in which the sixth-order differential equation is solved using the semi-numerical method, which is a differential method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2002

W.F. Sales, G. Guimarães, Á.R. Machado and E.O. Ezugwu

Many machining researches are focused on cutting tools mainly due to the wear developed as a result of high temperatures generated that accelerate thermally related wear…

Abstract

Many machining researches are focused on cutting tools mainly due to the wear developed as a result of high temperatures generated that accelerate thermally related wear mechanisms, consequently reducing tool life. Cutting fluids are used in machining operations to minimize cutting temperature although there is no available indicator of their cooling ability. In this study, a method to determine the cooling ability of cutting fluids is proposed. A thermocouple technique was used to verify the chip‐tool interface temperature of various cutting fluids during turning operation. The method consists of measuring the temperature drop from 300°C up to room temperature after heating a standardised AISI 8640 workpiece and fixing it to the chuck of a lathe and with a constant spindle speed of 150 rpm the cutting fluid was applied to a specific point. The temperature was measured and registered by an infrared thermosensor with the aid of an AC/DC data acquisition board and a PC. The convective heat exchange coefficient, h, was determined and used to classify the cooling ability of the cutting fluids. The machining tests showed that the application of the fluid with better cooling ability will not always guarantee lower chip‐tool interface temperature.

Details

Industrial Lubrication and Tribology, vol. 54 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 January 2016

Chunyu Zhao, Shijun You, Hao Gao and Wei Yu

The purpose of this paper is to use numerical simulations to investigate the energy conversion performance and the flow and temperature structures inside horizontal tubes…

Abstract

Purpose

The purpose of this paper is to use numerical simulations to investigate the energy conversion performance and the flow and temperature structures inside horizontal tubes connected to a vertical manifold channel.

Design/methodology/approach

The simulations are performed for different flow rates and inlet temperatures using CFD.

Findings

In both the “flowing wind mode” and “upwind mode,” the inlet velocity is not infinitely small under the influence of natural convection; however, such small inlet velocities cannot be achieved in practice and are of no practical significance. In the “flowing wind mode,” the appropriate velocity for achieving high efficiency is 0.01-0.02 m/s. In the “upwind mode,” the appropriate velocity for obtaining high efficiency is 0.1-0.2 m/s. A high inlet temperature can lead to high efficiency; therefore, a large temperature difference and a small flow can be used in actual designs.

Originality/value

The energy conversion performance and flow structures inside evacuated tubular collectors were investigated using CFD for different operating conditions, notably in the “following wind mode” and the “upwind mode.”

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2008

Valerio De Santis, Mauro Feliziani and Francescaromana Maradei

The aim of the paper is to apply a numerical dosimetry procedure to a biological tissue with an embedded discrete vascularisation in order to evaluate the temperature increase…

Abstract

Purpose

The aim of the paper is to apply a numerical dosimetry procedure to a biological tissue with an embedded discrete vascularisation in order to evaluate the temperature increase produced by radio‐frequency (RF) exposure.

Design/methodology/approach

The blood temperature inside thin vessels is analysed by a 1D finite difference procedure to solve the convection‐dominated heat problem. The tissue temperature inside the remaining 3D domain governed by the heat diffusion equation is calculated by the finite element method. Then, the two separate numerical methods are coupled by an iterative time domain procedure.

Findings

The main advantage of the proposed hybrid method is found to be the considerable reduction of the number of unknowns respect to other traditional numerical techniques.

Research limitations/implications

In this paper, only the numerical model of the new hybrid procedure has been proposed. In future work realistic biological regions will be examined and the proposed model will be improved by considering the artery/vein coupled structure.

Originality/value

The originality of the proposed method regards the solution of the bio‐heat equation by means of a new hybrid finite element/finite difference procedure. This procedure is applied inside a vascularized region considering a discrete blood vessel structure.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 April 2020

B.J. Gireesha and A. Roja

Microfluidics is one of the interesting areas of the research in thermal and engineering fields due to its wide range of applications in a variety of heat transport problems such…

Abstract

Purpose

Microfluidics is one of the interesting areas of the research in thermal and engineering fields due to its wide range of applications in a variety of heat transport problems such as micromixers, micropumps, cooling systems for microelectromechanical systems (MEMS) micro heat exchangers, etc. Lower cost with better thermal performance is the main objective of these devices. Therefore, in this study, the entropy generation in an electrically conducting Casson fluid flow through an inclined microchannel with hydraulic slip and the convective condition hves been numerically investigated. Aspects of viscous dissipation, natural convection, joule heating, magnetic field and uniform heat source/sink are used

Design/methodology/approach

Suitable non-dimensional variables are used to reduce the non-linear system of ordinary differential equations, and then this system is solved numerically using Runge-Kutta-Fehlberg fourth fifth order method along with shooting technique. The obtained numerical solutions of the fluid velocity and temperature are used to characterize the entropy generation and Bejan number. Also, the Nusselt number and skin friction coefficient for various values of parameters are examined in detail through graphs. The obtained present results are compared with the existing one which is perfectly found to be in good agreement.

Findings

It is established that the production of the entropy can be improved with the aspects of joule heating, viscous dissipation and internal heat source/sink. The entropy generation enhances for increasing values of Casson Parameter (β) and Biot number (Bi). Furthermore, it is interestingly noticed that the enhancement of Reynolds number and uniform heat source/sink shows the dual behaviour of the entropy generation due to significant influence of the viscous forces in the region close to the channel walls. It was observed that increasing behaviour of the heat transfer rate for enhancement values of the Eckert number and heat source/sink ratio parameter and the drag force are retarded with higher estimations of Reynolds number.

Originality/value

Entropy generation analysis on MHD Casson fluid flow through an inclined microchannel with the aspects of convective, Joule heating, viscous dissipation, magnetism, hydraulic slip and internal heat source/sink has been numerically investigated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 931