Search results

1 – 10 of 10
Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 July 2023

Chuan Chih Hsu, Chia Shih Su and Chia Li Su

This study aims to investigate the impact of regular Kung Fu and Taekwondo practice on the health and quality of life among elderly individuals in the Maule region, Chile.

Abstract

Purpose

This study aims to investigate the impact of regular Kung Fu and Taekwondo practice on the health and quality of life among elderly individuals in the Maule region, Chile.

Design/methodology/approach

The authors designed a 12-week Kung Fu and Taekwondo workshop with activities suitable for their age. Through semistructured interviews (at the beginning and the end of the workshop), along with periodic monitoring of vital signs and cardiovascular components, the authors observed an improvement in participants’ physical (strength, speed of reaction and flexibility) and psychological conditions (self-esteem and resilience), quality of life (relationships with family and friends and ability to deal with stressful events in working life) and health (waist circumference, percentage of oxygen saturation in blood, blood pressure, among other values).

Findings

From these results, the authors affirm that this workshop improves health and physical condition and helps the participants develop the coping capacity to deal with stressful situations and complicated interpersonal relationships. In this sense, the authors conclude that Kung Fu and Taekwondo as regular sports activities can benefit senior citizens’ aging process.

Originality/value

This research is based on an original study project.

Details

Working with Older People, vol. 28 no. 2
Type: Research Article
ISSN: 1366-3666

Keywords

Book part
Publication date: 20 November 2023

Surjeet Dalal, Bijeta Seth and Magdalena Radulescu

Customers today expect businesses to cater to their individual needs by tailoring the products they purchase to their own preferences. The term “Industry 5.0” refers to a new wave…

Abstract

Customers today expect businesses to cater to their individual needs by tailoring the products they purchase to their own preferences. The term “Industry 5.0” refers to a new wave of manufacturing that aims to meet each customer's unique demands. Even while Industry 4.0 allowed for mass customization, that wasn't good enough before, customers today demand individualized products at scale, and Industry 5.0 is driving the transition from mass customization to mass personalization to meet these demands. It caters to the individual needs of each consumer by meeting their demands. More specialized components for use in medicine are made possible by the widespread customization made possible by Industry 5.0. These individualized parts are included into the medical care of the patient to meet their specific needs and preferences. In the current medical revolution, an enabling technology of Industry 5.0 can produce medical implants, artificial organs, bodily fluids, and transplants with pinpoint accuracy. With the advent of AI-enabled sensors, we now live in a world where data can be swiftly analyzed. Machines may be programmed to make complex choices on the fly. In the medical field, these innovations allow for exact measurement and monitoring of human body variables according to the individual's needs. They aid in monitoring the body's response to training for peak performance. It allows for the digital dissemination of accurate healthcare data networks. In order to collect and exchange relevant patient data, every equipment is online.

Details

Digitalization, Sustainable Development, and Industry 5.0
Type: Book
ISBN: 978-1-83753-191-2

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 2 March 2022

Maryam Khashij, Mohammad Hossein Salmani, Arash Dalvand, Hossien Fallahzadeh, Fatemeh Haghirosadat and Mehdi Mokhtari

This paper aims to investigation of processes for Pb2+ elimination from water/wastewater as a significant public health issue in many parts of world. The removal of Pb2+ ions by…

Abstract

Purpose

This paper aims to investigation of processes for Pb2+ elimination from water/wastewater as a significant public health issue in many parts of world. The removal of Pb2+ ions by various nanocomposites has been explained from water/wastewaters. ZnO-based nanocomposites, as eco-friendly nanoparticles with unique physicochemical properties, have received increased attention to remove Pb2+ ions from water/wastewaters.

Design/methodology/approach

In this review, different ZnO-based nanocomposites were reviewed for their application in the removal of Pb2+ ions from the aqueous solution, typically for wastewater treatment using methodology, such as adsorption. This review focused on the ZnO-based nanocomposites for removing Pb2+ ions from water and wastewaters systems.

Findings

The ZnO-based nanocomposite was prepared by different methods, such as electrospinning, hydrothermal/alkali hydrothermal, direct precipitation and polymerization. Depending on the preparation method, various types of ZnO-based nanocomposites like ZnO-metal (Cu/ZnO, ZnO/ZnS, ZnO/Fe), ZnO-nonmetal (PVA/ZnO, Talc/ZnO) and ZnO-metal/nonmetal (ZnO/Na-Y zeolite) were obtained with different morphologies. The effects of operational parameters and adsorption mechanisms were discussed in the review.

Research limitations/implications

The findings may be greatly useful in the application of the ZnO-based nanocomposite in the fields of organic and inorganic pollutants adsorption.

Practical implications

The present study is novel, because it investigated the morphological and structural properties of the synthesized ZnO-based nanocomposite using different methods and studied the capability of green-synthesized ZnO-based nanocomposite to remove Pb2+ ions as water contaminants.

Social implications

The current review can be used for the development of environmental pollution control measures.

Originality/value

This paper reviews the rapidly developing field of nanocomposite technology.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 December 2022

Sobiya Manzoor, Syed Zameer Hussain, Tawheed Amin, Omar Bashir, Bazila Naseer, Abida Jabeen, Ufaq Fayaz, Naseh Nisar, Aarizoo Mushtaq, Monisa Yousouf, Zahida Naseem and Uzznain Khan

The purpose of this article was to highlight the various methods of extrusion technologies for encapsulation of bioactive components (BACs).

Abstract

Purpose

The purpose of this article was to highlight the various methods of extrusion technologies for encapsulation of bioactive components (BACs).

Design/methodology/approach

BACs provide numerous health-care benefits; however, downsides, including a strong effect of organoleptic properties by reason of the bitterness and acridity of a few components, and also a short shelf-life, limit their application in food. The food industry is still demanding complicated qualities from food ingredients, which were often impossible to obtain without encapsulation such as stability, delayed release, thermal protection and an acceptable sensory profile. Various techniques such as melt injection extrusion, hot-melt extrusion, electrostatic extrusion, co-extrusion and particles from gas-saturated solutions, could be used for maintaining these characteristics.

Findings

Extrusion technology has been well used for encapsulation of bioactive chemicals in an effort to avoid their numerous downsides and to boost their use in food. The count of BACs that could be encapsulated has risen owing to the extrusion technology just as form of encapsulation. Extrusion technique also aids in the devaluation of the fragment size of encapsulated BACs, allowing for greater application in the food business.

Originality/value

The study reported that encapsulating BACs makes them more stable in both the product itself and in the gastrointestinal tract, so using encapsulated BACs would result in a product with stronger preventive properties.

Details

Nutrition & Food Science , vol. 53 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 18 April 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Francis Augustus A. Pascua, Jules M. Juanites, Maricel A. Eneria, Richelle G. Zafra and Marish S. Madlangbayan

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper…

Abstract

Purpose

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper aims to present the results of experiments investigating the effect of incorporating such type of concrete waste on the strength and durability-related properties of concrete.

Design/methodology/approach

A total of 77 concrete cylinders sized Ø100 × 200 mm with varying amount of recycled concrete aggregate (RCA) (0%–100% by volume, at 25% increments) and maximum aggregate size (12.5, 19.0 and 25.0 mm) were fabricated and tested for slump, compressive strength, sorptivity and electrical resistivity. Disk-shaped specimens, 50-mm thick, were cut from the original cylinders for sorptivity and resistivity tests. Analysis of variance and post hoc test were conducted to detect statistical variability among the data.

Findings

Compared to regular concrete, a reduction of slump (by 18.6%), strength (15.1%), secondary sorptivity (31.5%) and resistivity (17.0%) were observed from concrete containing 100% RCA. Statistical analyses indicate that these differences are significant. In general, an aggregate size of 19 mm was found to produce the optimum value of slump, compressive strength and sorptivity in regular and RCA-added concrete.

Originality/value

The results of this study suggest that comparable properties of normal concrete were still achieved by replacing 25% of coarse aggregate volume with 19-mm RCA, which was processed from laboratory-tested concrete samples. Therefore, such material can be considered as a potential and sustainable alternative to crushed gravel for use in light or nonstructural concrete construction.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 29 January 2024

Rebecca Dickason

While the main emotional labor strategies are well-documented, the manner in which professionals navigate emotional rules within the workplace and effectively perform emotional…

Abstract

Purpose

While the main emotional labor strategies are well-documented, the manner in which professionals navigate emotional rules within the workplace and effectively perform emotional labor is less understood. With this contribution, I aim to unveil “the good, the bad and the ugly” of emotional labor as a dynamic theatrical performance.

Methodology/Approach

Focusing on three geriatric long-term care units within a French public hospital, this qualitative study relies on two sets of data (observation and interviews). Deeply rooted within the field of study, the chosen methodological approach substantializes the subtle hues of the emotional experience at work and targets resonance rather than generalization.

Findings

Using the theatrical metaphor, this research underlines the role of space in the practice of emotional labor in a unique way. It identifies the main emotionalized zones or emotional regions (front, back, transitional, mixed) and details their characteristics, before unearthing the nonlinearity and polyphonic quality of emotional labor performance and the versatility needed to that effect. Indeed, this research shows how health-care professionals juggle with the specificities of each region, as well as how space generates both constraints and resources. By combining static and dynamic prisms, diverse instantiations of hybridity and spatial in-betweens, anchored in liminality and trajectories, are revealed.

Originality/Value

This research adds to the current body of literature on the concept of emotional labor by shedding light on its highly dynamic and interactional nature, revealing different levels of porosity between emotional regions and how the characteristics of each type of area can taint others and increase/decrease the occupational health costs of emotional labor. The study also raises questions about the interplay of emotional labor performance with the level of humanization/dehumanization of elderly people. Given the global demographics about an aging population, this gives food for thought at a social level.

Details

Emotion in Organizations
Type: Book
ISBN: 978-1-83797-251-7

Keywords

Article
Publication date: 3 January 2023

Mohammad Saleh Afsharkohan, Saman Dehrooyeh, Majid Sohrabian and Majid Vaseghi

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available…

Abstract

Purpose

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available market filaments do not contain any exact information report for printing settings, manufacturers are incapable of achieving desirable predefined print accuracy and mechanical properties for the final parts. The purpose of this study is to determine the importance of selecting suitable print parameters by understanding the intrinsic behavior of the material to achieve high-performance parts.

Design/methodology/approach

Two common commercial polylactic acid filaments were selected as the investigated samples. To study the specimens’ printing quality, an appropriate scaffold geometry as a delicate printing sample was printed according to a variety of speeds and nozzle temperatures, selected in the filament manufacturer’s proposed temperature range. Dimensional accuracy and qualitative surface roughness of the specimens made by one of the filaments were evaluated and the best processing parameters were selected. The scaffolds were fabricated again by both filaments according to the selected proper processing parameters. Material characterization tests were accomplished to study the reason for different filament behaviors in the printing process. Moreover, the correlations between the polymer structure, thermo-rheological behavior and printing parameters were denoted.

Findings

Compression tests revealed that precise printing of the characterized filament results in more accurate structure and subsequent improvement of the final printed sample elastic modulus.

Originality/value

The importance of material characterization to achieve desired properties for any purpose was emphasized. Obtained results from the rheological characterizations would help other users to benefit from the highest performance of their specific filament.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 May 2024

Cesar Omar Balderrama-Armendariz, Sergio Esteban Arbelaez-Rios, Santos-Adriana Martel-Estrada, Aide Aracely Maldonado-Macias, Eric MacDonald and Julian I. Aguilar-Duque

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder…

Abstract

Purpose

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder after multiple cycles in the laser system.

Design/methodology/approach

The experimental process for evaluating the reuse of SLS powders in a subsequent binder jetting process consists of four phases: powder characterization, bonding analysis, mixture testing and mixture characteristics. Analyses were carried out using techniques such as Fourier Transform Infrared Spectroscopy, scanning electron microscopy, thermogravimetric analysis and stress–strain tests for tension and compression. The surface roughness, color, hardness and density of the new mixture were also determined to find physical characteristics. A Taguchi design L8 was used to search for a mixture with the best mechanical strength.

Findings

The results indicated that the integration of waste powder PA12 with calcium sulfate hemihydrate (CSH) generates appropriate particle distribution with rounded particles of PA12 that improve powder flowability. The micropores observed with less than 60 µm, facilitated binder and infiltrant penetration on 3D parts. The 60/40 (CSH-PA12) mixture with epoxy resin postprocessing was found to be the best-bonded mixture in mechanical testing, rugosity and hardness results. The new CSH-PA12 mixture resulted lighter and stronger than the CSH powder commonly used in binder jetting technology.

Originality/value

This study adds value to the polymer powder bed fusion process by using its waste in a circular process. The novel reuse of PA12 waste in an established process was achieved in an accessible and economical manner.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 10