Search results

1 – 10 of 284
Open Access
Article
Publication date: 17 October 2022

Mervi Hamalainen and Asta Salmi

The purpose of this paper is to investigate two current transformation processes in the construction industry: the adoption of a novel material, cross-laminated timber (CLT), and…

1735

Abstract

Purpose

The purpose of this paper is to investigate two current transformation processes in the construction industry: the adoption of a novel material, cross-laminated timber (CLT), and the enhancement of digital transformation. This paper depicts the actors and interaction in the business network that is emerging around CLT construction and, in particular, how digital transformation (that is, the deployment of Construction 4.0 solutions) occurs in this business network.

Design/methodology/approach

Digital transformation is a relatively new phenomenon in CLT construction, and the authors, therefore, adopt a qualitative inductive research approach and rely on semi-structured interviews.

Findings

The findings of this paper suggest that it is critical for actors to adopt an interorganizational perspective in CLT construction, instead of only focusing on internal operations. An interorganizational perspective supports successful CLT construction, as well as the deployment of Construction 4.0 solutions. This will bring about the benefits of digital transformation in the construction industry.

Research limitations/implications

This paper investigates the network created around CLT construction in Finland but more generally illustrates the change toward Construction 4.0 solutions.

Practical implications

For managers, this paper explicates the importance of networking, instead of focusing on the internal development of the company, when adopting novel solutions emerging from both construction and information technology-related advancements.

Originality/value

Stability and traditions are characteristic of the construction industry. New technical solutions and materials, together with calls for sustainability, have challenged the traditional ways of constructing, and for example, the development of CLT construction has led to an emergence of new business networks. This material-related process and the ongoing digital transformation of business form an interesting context for an empirical-based analysis of changing interaction and networks. This paper gives the first insights into how digital transformation can benefit the evolution of the network.

Details

Journal of Business & Industrial Marketing, vol. 38 no. 6
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 21 December 2022

Milad Shabanian and Nicole Leo Braxtan

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled…

Abstract

Purpose

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled connections and CLT beams at ambient temperature (AT), after and during non-standard fire exposure.

Design/methodology/approach

The first set of experiments was performed as a benchmark to find the load-carrying capacity of the assembly and investigate the failure modes at AT. The post-fire performance (PFP) test was performed to investigate the residual strength of the assembly after 30-min exposure to a non-standard fire. The fire-performance (FP) test was conducted to investigate the thermo-mechanical behavior of the loaded assembly during non-standard fire exposure. In this case, the assembly was loaded to 67% of AT load-carrying capacity and partially exposed to a non-standard fire for 75 min.

Findings

Embedment failure and plastic deformation of the dowels in the beam were the dominant failure modes at AT. The load-carrying capacity of the assembly was reduced to 45% of the ambient capacity after 30 min of fire exposure. Plastic bending of the dowels was the principal failure mode, with row shear in the mid-layer of the CLT beam and tear-out failure of the header sides also observed. During the FP test, ductile embedment failure of the timber in contact with the dowels was the major failure mode at elevated temperature.

Originality/value

This paper presents for the first time the thermo-mechanical performance of CLT beam-to-girder connections at three different thermal conditions. For this purpose, the outside layers of the CLT beams were aligned horizontally.

Highlights

  1. Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

  2. Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

  3. Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Content available
Article
Publication date: 8 November 2011

528

Abstract

Details

Structural Survey, vol. 29 no. 5
Type: Research Article
ISSN: 0263-080X

Open Access
Article
Publication date: 28 September 2021

Alex Copping, Noorullah Kuchai, Laura Hattam, Natalia Paszkiewicz, Dima Albadra, Paul Shepherd, Esra Sahin Burat and David Coley

Understanding the supply network of construction materials used to construct shelters in refugee camps, or during the reconstruction of communities, is important as it can reveal…

1840

Abstract

Purpose

Understanding the supply network of construction materials used to construct shelters in refugee camps, or during the reconstruction of communities, is important as it can reveal the intricate links between different stakeholders and the volumes and speeds of material flows to the end-user. Using social network analysis (SNA) enables another dimension to be analysed – the role of commonalities. This is likely to be particularly important when attempting to replace vernacular materials with higher-performing alternatives or when encouraging the use of non-vernacular methods. This paper aims to analyse the supply networks of four different disaster-relief situations.

Design/methodology/approach

Data were collected from interviews with 272 displaced (or formally displaced) families in Afghanistan, Bangladesh, Nepal and Turkey, often in difficult conditions.

Findings

The results show that the form of the supply networks was highly influenced by the nature/cause of the initial displacement, the geographical location, the local availability of materials and the degree of support/advice given by aid agencies and or governments. In addition, it was found that SNA could be used to indicate which strategies might work in a particular context and which might not, thereby potentially speeding up the delivery of novel solutions.

Research limitations/implications

This study represents the first attempt in theorising and empirically investigating supply networks using SNA in a post-disaster reconstruction context. It is suggested that future studies might map the up-stream supply chain to include manufacturers and higher-order, out of country, suppliers. This would provide a complete picture of the origins of all materials and components in the supply network.

Originality/value

This is original research, and it aims to produce new knowledge.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 12 no. 1
Type: Research Article
ISSN: 2042-6747

Keywords

Content available
Article
Publication date: 1 August 2006

Stephen Todd

99

Abstract

Details

Structural Survey, vol. 24 no. 4
Type: Research Article
ISSN: 0263-080X

Open Access
Article
Publication date: 12 April 2022

Hüseyin Emre Ilgın, Markku Karjalainen and Sofie Pelsmakers

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

3064

Abstract

Purpose

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

Design/methodology/approach

Data were collected through literature surveys and case studies to examine the architectural, structural and constructional points of view to contribute to knowledge about the increasing high-rise timber constructions globally.

Findings

The main findings of this study indicated that: (1) central cores were the most preferred type 10 of core arrangements; (2) frequent use of prismatic forms with rectilinear plans and regular extrusions were identified; (3) the floor-to-floor heights range between 2.81 and 3.30 m with an average of 3 m; (4) the dominance of massive timber use over hybrid construction was observed; (5) the most used structural system was the shear wall system; (6) generally, fire resistance in primary and secondary structural elements exceeded the minimum values specified in the building codes; (7) the reference sound insulation values used for airborne and impact sounds had an average of 50 and 56 dB, respectively.

Originality/value

There is no study in the literature that comprehensively examines the main architectural and structural design considerations of contemporary tall residential timber buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Content available
Article
Publication date: 7 September 2021

Vojtěch Šálek, Kamila Cábová, František Wald and Milan Jahoda

The purpose of this paper is to present a complex pyrolysis computational fluid dynamics (CFD) model of timber protection exposed to fire in a medium size enclosure. An emphasis…

Abstract

Purpose

The purpose of this paper is to present a complex pyrolysis computational fluid dynamics (CFD) model of timber protection exposed to fire in a medium size enclosure. An emphasis is placed on rarely used temperature-dependent thermal material properties effecting the overall simulation outputs. Using the input dataset, a fire test model with oriented strand boards (OSB) in the room corner test facility is created in Fire Dynamics Simulator (FDS).

Design/methodology/approach

Seven FDS models comprising different complexity approaches to modelling the burning of wood-based materials, from a simplified model of burning based on a prescribed heat release rate to complex pyrolysis models which can describe the fire spread, are presented. The models are validated by the experimental data measured during a fire test of OSB in the room corner test facility.

Findings

The use of complex pyrolysis approach is recommended in real-scale enclosure fire scenarios with timber as a supplementary heat source. However, extra attention should be paid to burning material thermal properties implementation. A commonly used constant specific heat capacity and thermal conductivity provided poor agreement with experimental data. When the fire spread is expected, simplified model results should be processed with great care and the user should be aware of possible significant errors.

Originality/value

This paper brings an innovative and rarely used complex pyrolysis CFD model approach to predict the behaviour of timber protection exposed to fire. A study on different temperature-dependent thermal material properties combined with multi-step pyrolysis in the room corner test scenario has not been sufficiently published and validated yet.

Details

Journal of Structural Fire Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 11 July 2023

Margherita Lisco and Radhlinah Aulin

The reuse of timber building parts, when designing new buildings, has become a topic of increasing discussion as a proposed circular solution in support of sustainable development…

Abstract

Purpose

The reuse of timber building parts, when designing new buildings, has become a topic of increasing discussion as a proposed circular solution in support of sustainable development goals. Designers face the difficulty of identifying and applying different design strategies for reuse due to multiple definitions, which are used interchangeably. The purpose of this study is to propose a taxonomy to define the relationships between various concepts and practices that comprise the relevant strategies for reuse, notably design for disassembly (DfD) and design for adaptability (DfA).

Design/methodology/approach

Literature reviews were conducted based on research publications over the previous 12 years and located through the Web of Science and Scopus.

Findings

A taxonomy for the design process grounded on two strategies for reuse is presented: DfD and DfA. Based on previous work, the taxonomy aims to build a vocabulary of definitions in DfD and DfA to support other researchers and practitioners working in the field.

Research limitations/implications

The research is limited to the design phase of timber-based buildings. It does not take into account the other phases of the construction process, neither other kind of construction methods.

Practical implications

The application of the taxonomy can facilitate communication between different actors and provide a way for building product manufacturers to demonstrate their reuse credentials, enabling them to produce and promote compliant products and thereby support design for reuse strategies.

Social implications

This paper could contribute to a closer collaboration of all stakeholders involved in the building process since the very early phases of the conceptual design.

Originality/value

This paper contributes a comprehensive taxonomy to support the deployment of circular reuse strategies and assist designers and other stakeholders from the earliest of phases in the building’s life cycle. The proposed definition framework provided by the taxonomy resolves the longstanding lack of a supporting vocabulary for reuse and can be used as a reference for researchers and practitioners working with the DfD and DfA.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 7 December 2022

Milad Shabanian and Nicole Leo Braxtan

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled…

Abstract

Purpose

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled connections was investigated at ambient temperature (AT) and after and during non-standard fire exposure.

Design/methodology/approach

Three AT tests were conducted to evaluate the load-carrying capacity and failure modes of the assembly at room temperature. Two post-fire performance (PFP) tests were performed to study the impact of 30-min (PFP30) and 60-min (PFP60) partial exposure to a non-standard fire on the residual strength of the assemblies. The assemblies were exposed to fire in a custom-designed frame, then cooled and loaded to failure. A fire performance (FP) test was conducted to study the fire resistance (FR) during non-standard fire exposure by simultaneously applying fire and a mechanical load equal to 65% of the AT load carrying capacity.

Findings

At AT, embedment failure of the dowels followed by splitting failure at the Glulam-beam and tensile failure of the epoxy between the layers of CLT-walls were the dominant failure modes. In both PFP tests, the plastic bending of the dowels was the only observed failure mode. The residual strength of the assembly was reduced 14% after 30 min and 37% after 60 min of fire exposure. During the FP test, embedment failure of timber in contact with the dowels was the only major failure mode, with the maximum rate of displacement at 51 min into the fire exposure.

Originality/value

This is the first time that the thermomechanical performance of such an assembly with a full-contact connection is presented.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Content available
Book part
Publication date: 9 November 2017

Sizwe Timothy Phakathi

Abstract

Details

Production, Safety and Teamwork in a Deep-Level Mining Workplace
Type: Book
ISBN: 978-1-78714-564-1

1 – 10 of 284