Search results

1 – 5 of 5
Article
Publication date: 10 October 2022

Xiongmin Tang, Tianhong Jiang, Weizheng Chen, ZhiHong Lin, Zexin Zhou, Chen Yongquan and Miao Zhang

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved…

Abstract

Purpose

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved for DBD application fields.

Design/methodology/approach

To address the issue, a set of modes that can generate a high-efficiency pulse excitation voltage in a full-bridge inverter are adopted. With the set of modes, the unique equivalent circuit of DBD loads and the parasitic parameter of the step-up transformer can be fully used. Based on the set of modes, a control strategy for the full-bridge inverter is designed. To test the performance of the power supply, a simulation model is established and an experimental prototype is made with a DBD excimer lamp.

Findings

The simulation and experimental results show that not only a high-efficiency excitation voltage can be generated for the DBD load, but also the soft switching of all power switch is realized. Besides this, with the set of modes and the proposed control strategy, the inverter can operate in a high frequency. Compared with other types of power supplies, the power supply used in the paper can fully take advantage of the potential of the excimer lamp at the same input power.

Originality/value

This work considers that how to use a simple and classical topology to provide a high-efficiency excitation voltage for DBD loads is one of the primary problems to be solved for DBD application fields.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 May 2023

Huan Liu, Rui Wang, Junyao Wang, Xingyu Chen, Yunpeng Li, Bowen Cui, Tianhong Lang and Weihua Zhu

Flexible pressure sensor arrays have promising applications in analog haptics, reconfiguration of sensory functions, artificial intelligence, wearable devices and human-computer…

Abstract

Purpose

Flexible pressure sensor arrays have promising applications in analog haptics, reconfiguration of sensory functions, artificial intelligence, wearable devices and human-computer interaction. The force disturbance generated by the connecting material between the sensor array units will reduce the detection accuracy of the unit. The purpose of this paper is to propose a flexible pressure sensor with interference immunity capability. A C-type bridge flexible piezoelectric structure is used to improve the pressure perturbation. The interference immunity capability of the sensor has been improved.

Design/methodology/approach

In this paper, a C-type pressure sensor array structure by rapid injection moulding is manufactured through the positive piezoelectric effect of a piezoelectric material. The feasibility of C-type interference immunity structure in a flexible sensor array is verified by further analysis and experiment. A flexible pressure sensor array with C-type interference immunity structure has been proposed.

Findings

In this paper, we present the results of the perturbation experiment results of the C-type pressure sensor array, showing that the perturbation error is less than 8%. The test of the flexible sensor array show that the sensor can identify the curved angle of up to 120 °, and the output sensitivity of the sensor in the horizontal state reaches 0.12 V/N, and the sensor can withstand the pressure of 80 N. The flexible sensor can work stably in the stretch rate range of 0–8.6% and the stretch length range of 0–6 mm.

Originality/value

In this paper, C-type pressure sensor array structure is fabricated by rapid injection moulding for the first time. The research in this paper can effectively reduce the disturbance of input pressure on the sensor’s internal array and improve the output accuracy. The sensor can intuitively reflect the number of fingers sliding on the sensor by the order in which the maximum voltage appears. Due to the strong interference immunity capability and flexibility of the flexible sensor array mechanism, it has a broad application prospect in the practical fields of haptic simulation, perceptual function reconstruction, artificial intelligence, wearable devices and human–computer interaction.

Article
Publication date: 27 March 2020

Yu hui Fan, Pan pan Liu, Bo Shen, Kejian Ma, Bang Wu, Tianhong Zheng and Fang Yang

The reinforced concrete open-web sandwich slab is composed of upper rib, lower rib, surface plate and shear key and was applied to long-span structure crossing at 18–30 m. The…

Abstract

Purpose

The reinforced concrete open-web sandwich slab is composed of upper rib, lower rib, surface plate and shear key and was applied to long-span structure crossing at 18–30 m. The shear-bearing capacity of shear key, having vital effects on the slab’s bearing capacity, is analysed to present its calculation formula used for the engineering application of the slab.

Design/methodology/approach

The shear-bearing capacity of shear key is analysed by the strut-and-tie model and the benchmark model established by the finite element method. Furthermore, the design formula of its shear capacity is given by the parametric analysis of FEM to adjust the result of the strut-and-tie model, using multivariate linear regression analysis of these parameters.

Findings

The calculation result of the benchmark model is compared with those of the strut-and-tie model and the standard formula, which indicates that the result of the strut-and-tie model is closer to that of the benchmark model than that of the standard formula. Moreover, the parametric analysis of the finite element model indicates that the volume–stirrup ratio of the shear key and the compression strength of the concrete have lesser effect on the shear capacity compared with the longitudinal reinforcement ratio and the shear-to-span ratio of the shear key and the relative section height of the rib.

Originality/value

The shear capacity of the shear key is provided in the paper by combining the finite element method and the strut-and-tie model, which is different from the calculation of the shear key in local codes and Chinese code, based on the theory of short corbel and the experiment of member. Furthermore, the formula of the shear capacity could be employed in the design and construction of the RC open-web sandwich slab, mainly used in the public and industrial multi-story building with long span to save the dwindling land resource currently.

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 December 2022

Jung-Chieh Lee and Jing Wang

Financial technology (Fintech) brings about innovative financial services, such as the possibility of introducing mobile wealth management applications (apps) into consumers'…

1104

Abstract

Purpose

Financial technology (Fintech) brings about innovative financial services, such as the possibility of introducing mobile wealth management applications (apps) into consumers' lives. Despite the rapid development of such apps, few studies have focused on users' switching intentions from traditional wealth management services to mobile settings (apps).

Design/methodology/approach

Through a survey research method, a total of 378 responses were collected to examine the model. The partial least squares (PLS) technique was employed for data analysis.

Findings

To fill this research gap, this paper adopts a push-pull-mooring (PPM) theoretical framework to develop a model for exploring users' switching intentions. According to the empirical results, several push (i.e. perceived inconvenience), pull (i.e. transaction efficiency, perceived personalization and mobile wealth management scenarios) or mooring (i.e. product market expertise and affective commitment) factors are identified that significantly affect switching intention. This study provides theoretical contributions and practical implications for the existing wealth management literature and also offers future research directions.

Originality/value

This study innovatively extends the PPM framework to the traditional and mobile wealth management domains to understand users' switching intentions from offline wealth management services to mobile wealth management apps. The authors uncover several push, pull and mooring factors that are critical for determining users’ switching decisions.

Details

International Journal of Bank Marketing, vol. 41 no. 2
Type: Research Article
ISSN: 0265-2323

Keywords

Article
Publication date: 12 August 2019

Lei Guo, Lien Zhu, Lei Ma, Jian Zhang, QiuYu Meng, Zheng Jin, Meihua Liu and Kai Zhao

The purpose of this paper is to prepare a spherical modifier-modified activated carbon fiber of high specific capacitance intended for electrode materials of supercapacitor.

Abstract

Purpose

The purpose of this paper is to prepare a spherical modifier-modified activated carbon fiber of high specific capacitance intended for electrode materials of supercapacitor.

Design/methodology/approach

In this study, phenolic-based microspheres are taken as modifiers to prepare PAN-based fiber composites by electrospinning, pre-oxidation and carbonization. Pearl-chain structures appear in RFC/ACF composites, and pure polyacrylonitrile fibers show a dense network. The shape and cross-linking degree are large. After the addition of the phenolic-based microspheres, the composite material exhibits a layered pearlite chain structure with a large porosity, and the RFC/ACF composite material is derived because of the existence of a large number of bead chain structures in the composite material. The density increases, the volume declines and the mass after being assembled into a supercapacitor as a positive electrode material decreases. The specific surface area of RFC/ACF composites is increased as compared to pure fibers. The increase in specific surface area could facilitate the diffusion of electrolyte ions in the material. Owing to the large number of bead chains, plenty of pore channels are provided for the diffusion of electrolyte ions, which is conducive to enhancing the electrochemical performance of the composite and improving the RFC/ACF composite and the specific capacitance of the material. The methods of electrochemical testing on symmetric supercapacitors (as positive electrodes) are three-electrode cyclic voltammetry, alternating current impedance and cycle stability.

Findings

The specific capacitance value of the composite material was found to be 389.2 F/g, and the specific capacitance of the electrode operating at a higher current density of 20 mA/cm2 was 11.87 F/g (the amount of the microsphere modifier added was 0.3 g). Using this material as a positive electrode to assemble into asymmetrical supercapacitor, after 2,000 cycles, the specific capacitance retention rate was 87.46 per cent, indicating excellent cycle stability performance. This result can be attributed to the fact that the modifier embedded in the fiber changes the porosity between the fibers, while improving the utilization of the carbon fibers and making it easier for electrolyte ions to enter the interior of the composites, thereby increasing the capacitance of the composites.

Originality/value

The modified PAN-based activated carbon fibers in the study had high specific surface area and significantly high specific capacitance, which makes it applicable as an efficient and environment-friendly absorbent, as well as an advanced electrode material for supercapacitor.

1 – 5 of 5