Search results

1 – 10 of over 5000
Article
Publication date: 5 October 2015

Ming Xia

The purpose of this paper is to present an upscale theory of the thermal-mechanical coupling particle simulation for non-isothermal problems in two-dimensional quasi-static…

Abstract

Purpose

The purpose of this paper is to present an upscale theory of the thermal-mechanical coupling particle simulation for non-isothermal problems in two-dimensional quasi-static system, under which a small length-scale particle model can exactly reproduce the same mechanical and thermal results with that of a large length-scale one.

Design/methodology/approach

The objective is achieved by extending the upscale theory of particle simulation for two-dimensional quasi-static problems from an isothermal system to a non-isothermal one.

Findings

Five similarity criteria, namely geometric, material (mechanical and thermal) properties, gravity acceleration, (mechanical and thermal) time steps, thermal initial and boundary conditions (Dirichlet/Neumann boundary conditions), under which a small-length-scale particle model can exactly reproduce both the mechanical and thermal behavior with that of a large length-scale model for non-isothermal problems in a two-dimensional quasi-static system are proposed. Furthermore, to test the proposed upscale theory, two typical examples subjected to different thermal boundary conditions are simulated using two particle models of different length scale.

Originality/value

The paper provides some important theoretical guidances to modeling thermal-mechanical coupled problems at both the engineering length scale (i.e. the meter scale) and the geological length scale (i.e. the kilometer scale) using the particle simulation method directly. The related simulation results from two typical examples of significantly different length scales (i.e. a meter scale and a kilometer scale) have demonstrated the usefulness and correctness of the proposed upscale theory for simulating non-isothermal problems in two-dimensional quasi-static system.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 May 2019

Pingping He, Feng Gao, Yan Li, Wenwu Wu and Dongya Zhang

Under fix-position preload, the high rotation speed of the angular contact ball bearing exacerbates the frictional heat generation, which causes the increase of the bearing…

Abstract

Purpose

Under fix-position preload, the high rotation speed of the angular contact ball bearing exacerbates the frictional heat generation, which causes the increase of the bearing temperature and the thermal expansion. The high rotation speed also leads to the centrifugal expansion of the bearing. Under the thermal and centrifugal effect, the structural parameters of the bearing change, affecting the mechanical properties of the bearing. The mechanical properties of the bearing determine its heat generation mechanism and thermal boundary conditions. The purpose of this paper is to study the effect of centrifugal and thermal effects on the thermo-mechanical characteristics of an angular contact ball bearing with fix-position preload.

Design/methodology/approach

Because of operating conditions, elastic deformation occurs between the ball and the raceway. Assuming that the surfaces of the ball and channel are absolutely smooth and the material is isotropic, quasi-static theory and thermal network method are used to establish the thermo-mechanical coupling model of the bearing, which is solved by Newton–Raphson iterative method.

Findings

The higher the rotation speed, the greater the influence of centrifugal and thermal effects on the bearing dynamic parameters, temperature rise and actual axial force. The calculation results show that the effects of thermal field on bearing dynamic parameters are more significant than the centrifugal effect. The temperature rise and actual axial force of the bearing are measured. Comparing the calculation and the experimental results, it is found that the temperature rise and the actual axial force of the bearing are closer to reality considering thermal and centrifugal effects.

Originality/value

In the past studies, the thermo-mechanical coupling characteristics research and experimental verification of angular contact ball bearing with fix-position preload are not concerned. Research findings of this paper provide theoretical guidance for spindle design.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 September 2024

GuoLong Zhang

This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of…

Abstract

Purpose

This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of inter-well pressure differentials, reservoir temperature and heat extraction fluid on geothermal extraction.

Design/methodology/approach

This study employs theoretical analysis and numerical simulation to explore the coupling mechanisms of temperature, permeability and stress fields in a geothermal reservoir using a thermal-hydrological-mechanical (THM) three-field coupling model.

Findings

The results reveal that the pressure differential between wells significantly impacts geothermal extraction capacity, with SC-CO2 achieving 1.83 times the capacity of water. Increasing the aperture of hydraulic and natural fractures effectively enhances geothermal production, with a notable enhancement for natural fractures.

Originality/value

The research provides a critical theoretical foundation for understanding THM coupling mechanisms in geothermal extraction, supporting the optimization of geothermal resource development and utilization.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2002

H.L. Xing and A. Makinouchi

In this paper, a strategy for analyzing a problem of the transient thermal coupling with the elastoplastic finite deformation is presented. A general constitutive equation is…

Abstract

In this paper, a strategy for analyzing a problem of the transient thermal coupling with the elastoplastic finite deformation is presented. A general constitutive equation is deduced by assuming the material properties to be temperature‐dependent. The thermal and mechanical coupling problem is solved with a staggered algorithm, which partitions the coupled problem into an elasto‐plastic problem at the known temperature field and a pure heat transfer problem at the fixed configuration. In this procedure, the elasto‐plastic mechanical analysis is based on the static‐explicit solution algorithm, which applies the finite deformation theory to describe the nonlinear behavior of the deformation body and its contact interaction with the tools during the forming process induced by the ordinary external loading and the “thermal loading”. In addition, both the ordinary heat transfer boundary conditions and the mechanical terms are taken into account in the implicit finite element analysis of the heat transfer. A special method based on the R‐minimum strategy is presented to solve the interaction problem between the static‐explicit mechanical analysis and the implicit thermal analysis. Furthermore, as examples, the analyses of sheet warm forming processes are demonstrated.

Details

Engineering Computations, vol. 19 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 August 2020

Ali Belhocine and Oday Ibraheem Abdullah

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal

Abstract

Purpose

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal analysis and the static structural sequentially with the coupled method. Computational fluid dynamics analysis will help the authors in the calculation of the values of the heat transfer (h) that will be exploited in the transient evolution of the brake disc temperatures. Finally, the model resolution allows the authors to visualize other important results of this research such as the deformations and the Von Mises stress on the disc, as well as the contact pressure of the brake pads.

Design/methodology/approach

A transient finite element analysis (FEA) model was developed to calculate the temperature distribution of the brake rotor with respect to time. A steady-state CFD model was created to obtain convective heat transfer coefficients (HTC) that were used in the FE model. Because HTCs are dependent on temperature, it was necessary to couple the CFD and FEA solutions. A comparison was made between the temperature of full and ventilated brake disc showing the importance of cooling mode in the design of automobile discs.

Findings

These results are quite in good agreement with those found in reality in the brake discs in service and those that may be encountered before in literature research investigations of which these will be very useful for engineers and in the design field in the vehicle brake system industry. These are then compared to experimental results obtained from literatures that measured ventilated discs surface temperatures to validate the accuracy of the results from this simulation model.

Originality/value

The novelty of the work is the application of the FEM to solve the thermomechanical problem in which the results of this analysis are in accordance with the realized and in the current life of the braking phenomenon and in the brake discs in service thus with the thermal gradients and the phenomena of damage observed on used discs brake.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 July 2017

Ming Xia

The main purpose of this paper is to present a comprehensive upscale theory of the thermo-mechanical coupling particle simulation for three-dimensional (3D) large-scale…

Abstract

Purpose

The main purpose of this paper is to present a comprehensive upscale theory of the thermo-mechanical coupling particle simulation for three-dimensional (3D) large-scale non-isothermal problems, so that a small 3D length-scale particle model can exactly reproduce the same mechanical and thermal results with that of a large 3D length-scale one.

Design/methodology/approach

The objective is achieved by following the scaling methodology proposed by Feng and Owen (2014).

Findings

After four basic physical quantities and their similarity-ratios are chosen, the derived quantities and its similarity-ratios can be derived from its dimensions. As the proposed comprehensive 3D upscale theory contains five similarity criteria, it reveals the intrinsic relationship between the particle-simulation solution obtained from a small 3D length-scale (e.g. a laboratory length-scale) model and that obtained from a large 3D length-scale (e.g. a geological length-scale) one. The scale invariance of the 3D interaction law in the thermo-mechanical coupled particle model is examined. The proposed 3D upscale theory is tested through two typical examples. Finally, a practical application example of 3D transient heat flow in a solid with constant heat flux is given to illustrate the performance of the proposed 3D upscale theory in the thermo-mechanical coupling particle simulation of 3D large-scale non-isothermal problems. Both the benchmark tests and application example are provided to demonstrate the correctness and usefulness of the proposed 3D upscale theory for simulating 3D non-isothermal problems using the particle simulation method.

Originality/value

The paper provides some important theoretical guidance to modeling 3D large-scale non-isothermal problems at both the engineering length-scale (i.e. the meter-scale) and the geological length-scale (i.e. the kilometer-scale) using the particle simulation method directly.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 1996

Takeshi Sasaki and Seiji Morikawa

Describes the thermo‐mechanical consolidation coupling analysis and its discretization method for the simulations of nuclear waste storage on jointed rock mass using the finite…

Abstract

Describes the thermo‐mechanical consolidation coupling analysis and its discretization method for the simulations of nuclear waste storage on jointed rock mass using the finite element method. An anisotropic stress‐strain and permeable constitutive laws are employed for combining arbitrary oriented joint sets using compliance matrices. Evaluates the influence of non‐linear permeability of joint by cubic‐law assuming parallel plate flow caused by excavation and the local change of permeability around the excavated cavern in different joint angles. The results of the two‐dimensional rock mass models with combining arbitrary oriented joint sets show that the fluid flow direction followed along the direction of the joint sets, and this seemed to be clearly explained from the influence of joint orientations.

Details

Engineering Computations, vol. 13 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2005

Boris Štok and Nikolaj Mole

To present numerical approaches to the solution of physically coupled non‐linear problems, which frequently happen to be characterized by their multi‐domain character.

Abstract

Purpose

To present numerical approaches to the solution of physically coupled non‐linear problems, which frequently happen to be characterized by their multi‐domain character.

Design/methodology/approach

By adopting coupled solution strategies a considerable attention is devoted, in order to obtain a computationally efficient numerical algorithm, to the selection of appropriate space and time discretization, as well as to a proper discrete approximation method used.

Findings

Coupling of two methods, the finite element method and the boundary element method, respectively, has proved to be computationally exceedingly advantageous, particularly in case of moving domains.

Practical implications

As specific case studies computer simulation of an induction heating problem and a mushy‐state forming problem are considered. A thorough discussion on the coupling effects, characterizing the evolutions of respective physical quantities' fields, is given, and their impact on those evolutions is identified.

Originality/value

This paper presents efficient numerical strategies for the solution of a certain class of multi‐physics and multi‐domain problems.

Details

Engineering Computations, vol. 22 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 November 2018

Mubing Yu, Xiaodong Yu, Xuhang Zheng and Hui Jiang

The purpose of this paper is to study thermal-fluid-solid coupling deformation and friction failure mechanism of bearing friction pairs under the working conditions of high speed…

Abstract

Purpose

The purpose of this paper is to study thermal-fluid-solid coupling deformation and friction failure mechanism of bearing friction pairs under the working conditions of high speed and heavy load.

Design/methodology/approach

The deformation is simulated based on thermal-fluid-solid coupling method, its deformation distribution law is revealed and the relationships of deformation of friction pairs, rotational speed and bearing weight are obtained.

Findings

The results prove that the oil film temperature rises sharply, the lubricating oil viscosity decreases rapidly, the film thickness becomes thinner, the deformation increases, the whole deformation is uneven and the boundary lubrication or dry friction are caused with the increase in rotational speed and bearing load.

Originality/value

The conclusions provide theoretical method for deformation solution and friction failure mechanism of hydrostatic thrust bearing.

Article
Publication date: 1 January 1990

I. St. Doltsinis

A synopsis is presented of the numerical finite element methodology currently in use at the Institute for Computer Applications (ICA) for the simulation of industrial forming…

Abstract

A synopsis is presented of the numerical finite element methodology currently in use at the Institute for Computer Applications (ICA) for the simulation of industrial forming processes. The development of the method is based on the inelastic properties of the material with an extension towards the inclusion of elastic effects and accounts for the thermal phenomena occurring in the course of the deformation. An essential constituent of the computational procedure is the treatment of the unsteady contact developing between the workpiece material and the tool during forming, and of the associated friction phenomena. Automatic mesh generation and variable discretization adaptable to the development of the numerical solution are of importance for industrial applications. These aspects are presented and discussed. Furthermore, solution techniques for thermomechanically coupled problems are considered and investigated with respect to their numerical properties. Application to industrial forming processes is demonstrated by means of three‐dimensional hot rolling and of superplastic sheet forming.

Details

Engineering Computations, vol. 7 no. 1
Type: Research Article
ISSN: 0264-4401

1 – 10 of over 5000