Search results

1 – 10 of 37
Open Access
Article
Publication date: 17 September 2024

Carlee Purdum, Benika Dixon and Amite Dominick

The impact of extreme heat on prisons and carceral facilities is becoming increasingly visible, yet remains overlooked by scholars, practitioners and policymakers. Prisons are a…

Abstract

Purpose

The impact of extreme heat on prisons and carceral facilities is becoming increasingly visible, yet remains overlooked by scholars, practitioners and policymakers. Prisons are a unique type of infrastructure designed to severely limit and control the movement of hundreds and even thousands of individuals as a form of punishment. This leads to many significant challenges to mitigating the risk of heat-related illness in prisons and other carceral spaces that have remained overlooked across many disciplines including emergency management, disasters, corrections and public health.

Design/methodology/approach

For this study, we analyzed 192 surveys from incarcerated persons in state prisons throughout Texas to understand how incarceration and the punitive prison environment create challenges to managing extreme heat in prisons.

Findings

We found that characteristics of modern incarceration, including communal distribution of resources, crowded conditions and a lack of agency for incarcerated people, create barriers to accessing resources during periods of extreme heat. Furthermore, the punitive nature of the prison environment as manifested in the relationship between staff and incarcerated persons and certain prison policies also create barriers to incarcerated persons accessing resources to reduce their risk of heat-related illness and death.

Social implications

These issues are particularly relevant to the health and safety of incarcerated persons during periods of extreme temperatures but also speak broadly to the implications of incarceration, disaster risk, and the advancement of human rights for incarcerated people.

Originality/value

This article addresses a gap in the literature by including the perspectives of persons incarcerated in Texas prisons experiencing extreme heat and implicates the characteristics of incarceration and punishment in the production of disaster risk.

Details

Disaster Prevention and Management: An International Journal, vol. 33 no. 6
Type: Research Article
ISSN: 0965-3562

Keywords

Open Access
Article
Publication date: 11 September 2024

Lindsey Bezek and Kwan-Soo Lee

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing…

Abstract

Purpose

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing the post-process, particularly sintering, conditions to consistently produce geometrically accurate and mechanically robust parts. This study aims to investigate how sintering temperature affects feature resolution and flexural properties of silica-based parts formed by vat photopolymerization (VPP) AM.

Design/methodology/approach

Test artifacts were designed to evaluate features of different sizes, shapes and orientations, and three-point bend specimens printed in multiple orientations were used to evaluate mechanical properties. Sintering temperatures were varied between 1000°C and 1300°C.

Findings

Deviations from designed dimensions often increased with higher sintering temperatures and/or larger features. Higher sintering temperatures yielded parts with higher strength and lower strain at break. Many features exhibited defects, often dependent on geometry and sintering temperature, highlighting the need for further analysis of debinding and sintering parameters.

Originality/value

To the best of the authors’ knowledge, this is the first time test artifacts have been designed for ceramic VPP. This work also offers insights into the effect of sintering temperature and print orientation on flexural properties. These results provide design guidelines for a particular material, while the methodology outlined for assessing feature resolution and flexural strength is broadly applicable to other ceramics, enabling more predictable part performance when considering the future design and manufacture of complex ceramic parts.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 16 September 2024

Md Saharik Joy, Priyanka Jha, Pawan Kumar Yadav, Taruna Bansal, Pankaj Rawat and Shehnaz Begam

The presence of green spaces plays a vital role in promoting urban sustainability. Urban green parks (UGPs) help create sustainable cities while providing fundamental ecological…

Abstract

Purpose

The presence of green spaces plays a vital role in promoting urban sustainability. Urban green parks (UGPs) help create sustainable cities while providing fundamental ecological functions. However, rapid urbanization has destroyed crucial green areas in Ranchi City, endangering inhabitants’ health. This study aims to locate current UGPs and predict future UGP sites in Ranchi City, Jharkhand.

Design/methodology/approach

It uses geographic information system (GIS) and analytical hierarchical process (AHP) to evaluate potential UGP sites. It involves the active participation of urban communities to ensure that the UGPs are designed to meet dweller’s needs. The site suitability assessment is based on several parameters, including the normalized difference vegetation index (NDVI), land use and land cover (LULC), population distribution, PM 2.5 levels and the Urban Heat Island (UHI) effect. The integration of these factors enables an evaluation of potential UGP’s sites.

Findings

The findings of this research reveal that 54.39% of the evaluated areas are unsuitable, 15.55% are less suitable, 12.76% are moderately suitable, 11.52% are highly suitable and 5.78% are very highly suitable for UGPs site selection. These results emphasize that the middle and outer regions of Ranchi City are the most favorable locations for establishing UGPs. The NDVI is the most important element in UGP site appropriateness, followed by LULC, population distribution, PM 2.5 levels and the UHI effect.

Originality/value

This study improves the process of integrating AHP and GIS, and UGPs site selection maps help urban planners and decision-makers make better choices for Ranchi City’s sustainability and greenness.

Details

Urbanization, Sustainability and Society, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8993

Keywords

Open Access
Article
Publication date: 28 June 2024

Ebere Donatus Okonta and Farzad Rahimian

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to…

Abstract

Purpose

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to address the significant emissions from building fabrics which pose a threat to achieving these targets if not properly addressed.

Design/methodology/approach

The study, based on a literature review and ten (10) case studies, explored five investigative approaches for evaluating building fabric: thermal imaging, in situ U-value testing, airtightness testing, energy assessment and condensation risk analysis. Cross-case analysis was used to evaluate both case studies using each approach. These methodologies were pivotal in assessing buildings’ existing condition and energy consumption and contributing to the UK’s net-zero ambitions.

Findings

Findings reveal that incorporating the earlier approaches into the building fabric showed great benefits. Significant temperature regulation issues were identified, energy consumption decreased by 15% after improvements, poor insulation and artistry quality affected the U-values of buildings. Implementing retrofits such as solar panels, air vents, insulation, heat recovery and air-sourced heat pumps significantly improved thermal performance while reducing energy consumption. Pulse technology proved effective in measuring airtightness, even in extremely airtight houses, and high airflow and moisture management were essential in preserving historic building fabric.

Originality/value

The research stresses the need to understand investigative approaches’ strengths, limitations and synergies for cost-effective energy performance strategies. It emphasizes the urgency of eliminating carbon dioxide (CO2) and greenhouse gas emissions to combat global warming and meet the 1.5° C threshold.

Details

Urbanization, Sustainability and Society, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8993

Keywords

Article
Publication date: 17 September 2024

Sinan Obaidat, Mohammad Firas Tamimi, Ahmad Mumani and Basem Alkhaleel

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and…

Abstract

Purpose

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and American Society for Testing and Materials (ASTM) D638’s Types I and II test standards.

Design/methodology/approach

The prediction approach combines artificial neural network (ANN) and finite element analysis (FEA), Monte Carlo simulation (MCS) and experimental testing for estimating tensile behavior for FDM considering uncertainties of input parameters. FEA with variance-based sensitivity analysis is used to quantify the impacts of uncertain variables, resulting in determining the significant variables for use in the ANN model. ANN surrogates FEA models of ASTM D638’s Types I and II standards to assess their prediction capabilities using MCS. The developed model is applied for testing the tensile behavior of PLA given probabilistic variables of geometry and material properties.

Findings

The results demonstrate that Type I is more appropriate than Type II for predicting tensile behavior under uncertainty. With a training accuracy of 98% and proven presence of overfitting, the tensile behavior can be successfully modeled using predictive methods that consider the probabilistic nature of input parameters. The proposed approach is generic and can be used for other testing standards, input parameters, materials and response variables.

Originality/value

Using the proposed predictive approach, to the best of the authors’ knowledge, the tensile behavior of PLA is predicted for the first time considering uncertainties of input parameters. Also, incorporating global sensitivity analysis for determining the most contributing parameters influencing the tensile behavior has not yet been studied for FDM. The use of only significant variables for FEA, ANN and MCS minimizes the computational effort, allowing to simulate more runs with reduced number of variables within acceptable time.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

1146

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 September 2024

Philipp Loacker, Siegfried Pöchtrager, Christian Fikar and Wolfgang Grenzfurtner

The purpose of this study is to present a methodical procedure on how to prepare event logs and analyse them through process mining, statistics and visualisations. The aim is to…

Abstract

Purpose

The purpose of this study is to present a methodical procedure on how to prepare event logs and analyse them through process mining, statistics and visualisations. The aim is to derive roots and patterns of quality deviations and non-conforming finished products as well as best practice facilitating employee training in the food processing industry. Thereby, a key focus is on recognising tacit knowledge hidden in event logs to improve quality processes.

Design/methodology/approach

This study applied process mining to detect root causes of quality deviations in operational process of food production. In addition, a data-ecosystem was developed which illustrates a continuous improvement feedback loop and serves as a role model for other applications in the food processing industry. The approach was applied to a real-case study in the processed cheese industry.

Findings

The findings revealed practical and conceptional contributions which can be used to continuously improve quality management (QM) in food processing. Thereby, the developed data-ecosystem supports production and QM in the decision-making processes. The findings of the analysis are a valuable basis to enhance operational processes, aiming to prevent quality deviations and non-conforming finished products.

Originality/value

Process mining is still rarely used in the food industry. Thereby, the proposed method helps to identify tacit knowledge in the food processing industry, which was shown by the framework for the preparation of event logs and the data ecosystem.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 12 July 2024

Osama Habbal, Ahmad Farhat, Reem Khalil and Christopher Pannier

The purpose of this study is to assess a novel method for creating tangible three-dimensional (3D) morphologies (scaled models) of neuronal reconstructions and to evaluate its…

Abstract

Purpose

The purpose of this study is to assess a novel method for creating tangible three-dimensional (3D) morphologies (scaled models) of neuronal reconstructions and to evaluate its cost-effectiveness, accessibility and applicability through a classroom survey. The study addresses the challenge of accurately representing intricate and diverse dendritic structures of neurons in scaled models for educational purposes.

Design/methodology/approach

The method involves converting neuronal reconstructions from the NeuromorphoVis repository into 3D-printable mold files. An operator prints these molds using a consumer-grade desktop 3D printer with water-soluble polyvinyl alcohol filament. The molds are then filled with casting materials like polyurethane or silicone rubber, before the mold is dissolved. We tested our method on various neuron morphologies, assessing the method’s effectiveness, labor, processing times and costs. Additionally, university biology students compared our 3D-printed neuron models with commercially produced counterparts through a survey, evaluating them based on their direct experience with both models.

Findings

An operator can produce a neuron morphology’s initial 3D replica in about an hour of labor, excluding a one- to three-day curing period, while subsequent copies require around 30 min each. Our method provides an affordable approach to crafting tangible 3D neuron representations, presenting a viable alternative to direct 3D printing with varied material options ensuring both flexibility and durability. The created models accurately replicate the fidelity and intricacy of original computer aided design (CAD) files, making them ideal for tactile use in neuroscience education.

Originality/value

The development of data processing and cost-effective casting method for this application is novel. Compared to a previous study, this method leverages lower-cost fused filament fabrication 3D printing to create accurate physical 3D representations of neurons. By using readily available materials and a consumer-grade 3D printer, the research addresses the high cost associated with alternative direct 3D printing techniques to produce such intricate and robust models. Furthermore, the paper demonstrates the practicality of these 3D neuron models for educational purposes, making a valuable contribution to the field of neuroscience education.

Article
Publication date: 12 September 2024

Sérgio B Gonçalves, Pedro Dantas, Francisco Guedes de Melo, João Gouveia, José Guimarães Consciência, Jorge Martins and Miguel Tavares da Silva

Arthroscopic osteochondroplasty is a minimally invasive procedure that has been used to treat femoroacetabular impingement syndrome, leading to significant improvements in…

Abstract

Purpose

Arthroscopic osteochondroplasty is a minimally invasive procedure that has been used to treat femoroacetabular impingement syndrome, leading to significant improvements in patients’ clinical outcomes and quality of life. However, some studies suggest that inadequate bone resection can substantially alter hip biomechanics. These modifications may generate different contact profiles and higher contact forces, increasing the risk of developing premature joint degeneration. To improve control over bone resection and biomechanical outcomes during arthroscopic osteochondroplasty surgery, this study aims to present a novel system for measuring femoroacetabular contact forces.

Design/methodology/approach

Following a structured design process for the development of medical devices, the steps required for its production using additive manufacturing with material extrusion and easily accessible sensors are described. The system comprises two main devices, one for measuring femoroacetabular contact forces and the other for quantifying the force applied by the assistant surgeon during lower limb manipulation. The hip device was designed for use within an arthroscopic environment, eliminating the need for additional portals.

Findings

To evaluate its performance, the system was first tested in a laboratory setup and later under in-service conditions. The 3D printing parameters were tuned to ensure the watertighness of the device and sustain the intraoperative fluid pressures. The final prototype allowed for the controlled measurement of the hip contact forces in real-time.

Originality/value

Using additive manufacturing and readily available sensors, the present work presents the first device to quantify joint contact forces during arthroscopic surgeries, serving as an additional tool to support the surgeon’s decision-making process regarding bone resection.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

849

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 37