Search results

1 – 10 of 364
Article
Publication date: 27 August 2024

Umar Farooq, Tao Liu, Ahmed Jan, Umer Farooq and Samina Majeed

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross…

Abstract

Purpose

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross non-Newtonian fluid model, we explore the heat transfer characteristics of this unique fluid in various applications such as pharmaceutical solvents, vaccine preservatives, and medical imaging techniques.

Design/methodology/approach

Our investigation reveals that the flow of this ternary hybrid nanofluid follows a laminar Cross model flow pattern, influenced by heat radiation and occurring around a stretched cylinder in a porous medium. We apply a non-similarity transformation to the nonlinear partial differential equations, converting them into non-dimensional PDEs. These equations are subsequently solved as ordinary differential equations (ODEs) using MATLAB’s bvp4c tools. In addition, the magnetic number in this study spans from 0 to 5, volume fraction of nanoparticles varies from 5% to 10%, and Prandtl number for EG as 204. This approach allows us to examine the impact of temperature on heat transfer and distribution within the fluid.

Findings

Graphical depictions illustrate the effects of parameters such as the Weissenberg number, porous parameter, Schmidt number, thermal conductivity parameter, Soret number, magnetic parameter, Eckert number, Lewis number, and Peclet number on velocity, temperature, concentration, and microorganism profiles. Our results highlight the significant influence of thermal radiation and ohmic heating on heat transmission, particularly in relation to magnetic and Darcy parameters. A higher Lewis number corresponds to faster heat diffusion compared to mass diffusion, while increases in the Soret number are associated with higher concentration profiles. Additionally, rapid temperature dissipation inhibits microbial development, reducing the microbial profile.

Originality/value

The numerical analysis of skin friction coefficients and Nusselt numbers in tabular form further validates our approach. Overall, our findings demonstrate the effectiveness of our numerical technique in providing a comprehensive understanding of flow and heat transfer processes in ternary hybrid nanofluids, offering valuable insights for various practical applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 April 2023

Qi Yang, ZhiQiang Feng, RuanBing Zhang, YunPu Wang, DengLe Duan, Qin Wang, XiaoYu Zou and YuHuan Liu

This study aims to develop a green, economical and efficient ultrasonic-/microwave assisted extraction (UMAE) process for the extraction of anthocyanins.

Abstract

Purpose

This study aims to develop a green, economical and efficient ultrasonic-/microwave assisted extraction (UMAE) process for the extraction of anthocyanins.

Design/methodology/approach

After optimizing the extraction conditions by response surface methodology, three assays including DPPH, ABTS·+, FRAP were applied to analyze the antioxidant activity of the extracted anthocyanins. The stability under different temperatures, reductant concentrations and pHs was also discussed. The components of anthocyanins in blueberry were analyzed by HPLC-QTOF-MS2.

Findings

The optimal extraction parameters were ultrasonic power of 300 W, microwave power of 365.28 W and solid–liquid ratio of 30 (g/mL). The possible structures can be speculated as Delphinidin-3-O-galactoside, Delphinidin, Petunidin, Delphinidin-3-O-glucoside, Petunidin-3-O-glucoside, Cyanidin-3-O-glucoside. The results demonstrated that the UMAE can improve the yield of anthocyanins in shorter extraction time with higher activity.

Originality/value

The present study may provide a promising and feasible route for extracting anthocyanins from blueberries and studying their physicochemical properties, ultimately promoting the utilization of blueberry anthocyanins.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 5 September 2024

Yeojin Kil, Margaret Graham and Anna V. Chatzi

Provisions for the minimisation of human error are essential through governance structures such as recruitment, human resource allocation and education/training. As predictors of…

Abstract

Purpose

Provisions for the minimisation of human error are essential through governance structures such as recruitment, human resource allocation and education/training. As predictors of safety attitudes/behaviours, employees’ personality traits (e.g. conscientiousness, sensation-seeking, agreeableness, etc.) have been examined in relation to human error and safety education.

Design/methodology/approach

This review aimed to explore research activity on the safety attitudes of healthcare staff and their relationship with the different types of personalities, compared to other complex and highly regulated industries. A scoping review was conducted on five electronic databases on all industrial/work areas from 2001 to July 2023. A total of 60 studies were included in this review.

Findings

Studies were categorised as driving/traffic and industrial to draw useful comparisons between healthcare. Certain employees’ personality traits were matched to positive and negative relationships with safety attitudes/behaviours. Results are proposed to be used as a baseline when conducting further relevant research in healthcare.

Research limitations/implications

Only two studies were identified in the healthcare sector.

Originality/value

The necessity for additional research in healthcare and for comparisons to other complex and highly regulated industries has been established. Safety will be enhanced through healthcare governance through personality-based recruitment, human resource allocation and education/training.

Details

International Journal of Health Governance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2059-4631

Keywords

Article
Publication date: 9 September 2024

Zeqian Wang, Chengjun Wang, Xiaoming Sun and Tao Feng

The role of inventors' creativity is crucial for technological innovation within enterprises. The mobility of inventors among different enterprises is a primary source for…

32

Abstract

Purpose

The role of inventors' creativity is crucial for technological innovation within enterprises. The mobility of inventors among different enterprises is a primary source for companies to acquire external knowledge. The mechanism of “learning-by-hiring” is widely recognized by companies. Therefore, it is important to determine how to allocate network resources to enhance the creativity of inventors when companies hire mobile inventors.

Design/methodology/approach

The study suggests an analytical framework that analyzes alterations in tie strength and structural holes resulting from the network embeddedness of mobile inventors as well as the effect of the interaction between these two variables on changes in inventor’s creativity after the mobility. In addition, this paper examines the moderating impact of cognitive richness of mobile inventors and cognitive distance between mobile inventors and new employers on the correlation between network embeddedness and creativity.

Findings

This study found that: (1) The increase of tie strength has a significant boost in creativity. (2) Increasing structural holes can significantly improve the creativity of mobile inventors. (3) When both the tie strength and the structural holes increase, the creativity of the mobile inventors significantly increases. (4) It is important to note that when there is a greater cognitive distance, stronger tie strength promotes the creativity of mobile inventors. Additionally, cognitive richness plays a significant role in moderating the relationship between changes in structural holes and the creativity of mobile inventors.

Originality/value

These findings provide theoretical guidance for firms to effectively manage mobile inventors and optimize collaborative networks within organizations.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 22 November 2022

Shuang Hu, Saileshsingh Gunessee and Chang Liu

Chinese multinational enterprises’ (MNEs) unprecedented, aggressive cross-border mergers and acquisitions (CBMAs) have led to several studies examining Chinese CBMAs, which…

Abstract

Purpose

Chinese multinational enterprises’ (MNEs) unprecedented, aggressive cross-border mergers and acquisitions (CBMAs) have led to several studies examining Chinese CBMAs, which importantly has also led to some degree of “theorising”. This study aims to undertake a “non-theoretical” fact-finding exercise before any theorising and empirical “causal” examination for a better understanding of the phenomenon (the rise of Chinese CBMAs).

Design/methodology/approach

This study uses a “stylised facts” approach which documents “empirical regularities” concerning Chinese CBMAs and thus guides new research questions.

Findings

Several facts are documented. Firstly, both the value and frequency of Chinese CBMAs are catching up to greenfield investments, with CBMA deals being larger in scale but lower in frequency. Secondly, Chinese CBMAs show a global reach away from the regional orientation of their early years. Thirdly, Chinese MNEs are possibly transforming their value chain with industrial upgrading as an aim. Fourthly, Chinese “full” acquisitions of targets have surged, especially in OECD countries, suggestive of Chinese MNEs’ “radical” acquisition approaches.

Originality/value

The gathered facts lend support to the view of the need for such fact-finding exercises to explicate and shed “new” light on the phenomenon (beyond our “current” views/beliefs). An understanding of the underlying trends beyond bare facts can also identify new knowledge, which can in turn provide new directions for research.

Details

International Journal of Emerging Markets, vol. 19 no. 8
Type: Research Article
ISSN: 1746-8809

Keywords

Open Access
Article
Publication date: 10 July 2024

Tianyun Shi, Zhoulong Wang, Jia You, Pengyue Guo, Lili Jiang, Huijin Fu and Xu Gao

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is…

Abstract

Purpose

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is complex, and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters, perimeter intrusion and external environmental hazards. The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.

Design/methodology/approach

In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments, the research status is elaborated, and the latest research progress and achievements of the team are introduced. This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological, perimeter and external environmental situation perception methods for high-speed rail operation.

Findings

Based on the technical route of “situational awareness evaluation warning active control,” a technical system for monitoring the safety of high-speed train operation environments has been formed. Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters, perimeter intrusion and the external environment on high-speed rail safety. These works strongly support the improvement of China’s railway environmental safety guarantee technology.

Originality/value

With the operation of CR450 high-speed trains with a speed of 400 km per hour and the application of high-speed train autonomous driving technology in the future, new and higher requirements have been put forward for the safety of high-speed rail operation environments. The following five aspects of work are urgently needed: (1) Research the single factor disaster mechanism of wind, rain, snow, lightning, etc. for high-speed railways with a speed of 400 kms per hour, and based on this, study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment, revealing the coupling disaster mechanism of multiple influencing factors; (2) Research covers multi-source data fusion methods and associated features such as disaster monitoring data, meteorological information, route characteristics and terrain and landforms, studying the spatio-temporal evolution laws of meteorological disasters, perimeter intrusions and external environmental hazards; (3) In terms of meteorological disaster situation awareness, research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines; (4) In terms of perimeter intrusion, research a multi-modal fusion perception method for typical scenarios of high-speed rail operation in all time, all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and (5) In terms of external environment, based on the existing general network framework for change detection, we will carry out research on change detection and algorithms in the surrounding environment of high-speed rail.

Article
Publication date: 28 March 2023

Bing Lei, Saihua Shi and Wei Liu

The purpose of this study is to use the grounded theory to summarize the types of celebrity persona and to construct a theoretical model for celebrity persona on consumer purchase…

Abstract

Purpose

The purpose of this study is to use the grounded theory to summarize the types of celebrity persona and to construct a theoretical model for celebrity persona on consumer purchase intention. Based on the study results, it provides better suggestions for merchants and live streamers and is an expansion of previous research on live-streaming e-commerce.

Design/methodology/approach

The grounded theory is recognized as the most scientific qualitative research method and is the ideal explorative method for generating theory. First, the participants were interviewed, and interview data were collected. Then the interview data were organized and analyzed. Finally, this paper summarizes the types of celebrity persona and constructes a theoretical model framework of celebrity persona on consumers' purchase intention.

Findings

The results show that the celebrity live streamer persona can be divided into two types: personalized persona and professional persona. Through emotional attachment, the celebrity's persona affects the consumer's purchase intentions. As well as, product type plays a moderating role between celebrity persona and consumer purchase intentions.

Originality/value

The contribution of this research is to start from the celebrity persona, link the celebrity persona with the consumer purchase intentions and expand the research scope of the celebrity persona. It opens the “black box” of the heterogeneity of celebrity live streamers' characteristics on consumer purchase intentions.

Article
Publication date: 24 July 2024

Jiahao Lu, Ran Tao, Di Zhu and Ruofu Xiao

This study focuses on the CFD numerical simulation and analysis of the vortex stacking problem at the top of the impeller of a high-speed fuel pump, mainly using LCS and entropy…

Abstract

Purpose

This study focuses on the CFD numerical simulation and analysis of the vortex stacking problem at the top of the impeller of a high-speed fuel pump, mainly using LCS and entropy production theory to visualize the vortex at the top of the impeller as well as quantitatively analyzing the energy loss caused by the vortex at the top of the impeller. By combining the two methods, the two are well verified with each other that the stacking problem of the vortex at the top of the impeller and the location of the energy loss caused by the vortex are consistent with the vortex location. Such a method can reveal the problem of vortex buildup at the top of the lobe well, and provide a novel guidance idea for improving the performance of high-speed fuel pumps.

Design/methodology/approach

Based on CFD numerical simulation and analysis, this study mainly uses LCS and entropy production theory to visualize the top vortex of the impeller. Through the combination of the two methods, the accumulation problem of the top vortex of the impeller and the location of the energy loss caused by the vortex can be well revealed.

Findings

(1) The CFD numerical simulation analysis of the high-speed fuel pump is carried out, and the test is conducted to verify the numerical simulation results. The inlet and outlet pressure difference? P is used as the validation index, and the error analysis shows that the error between numerical simulation and test results is within 10%, which meets our requirements. Therefore, we carry out the next analysis with the help of CFD numerical simulation. By analyzing the full working condition simulation, its inlet and outlet differential pressure? P and efficiency? Are evaluated. It is found that its differential pressure decreases with the flow rate and its efficiency reaches its maximum at Qv = 9.87 L/s with a maximum efficiency of 78.32%. (2) We used the LCS in the analysis of vortices at the top of the impeller blades of a high-speed fuel pump. One of the metrics used to describe the LCS in fluid dynamics is the FTLE. The high FTLE region represents the region with the highest and fastest particle trajectory stretching velocity in the fluid flow. We performed a cross-sectional analysis of the FTLE field on the different height surfaces of the impeller on 25% Plane, 50% Plane, and 75% Plane, respectively. And a quarter turn of the rotor rotation was analyzed as a cycle divided into 8 moments. It is found that on 25% Plane, the vortex at the top of the lobe is not obvious, but there are high FTLE values on the shroud surface. On 50% Plane, the lobe top vortex is relatively obvious and the number of vortices is three. The vortex pattern remains stable with the rotating motion of the rotor. At 75% Plane, the lobe top vortex is more visible and its number of vortices increases to about 5 and the vortex morphology is relatively stable. The FTLE ridges visualize the vortex profile. This is a good guide for fluid dynamics analysis. (3) At the same time, we use the entropy production theory to quantitatively analyze the energy loss, and define the entropy production rate Ep. Through the entropy production analysis of the impeller shroud surface and the suction surface of the pressure surface of the blades at eight moments, we find that the areas of high energy loss are mainly concentrated in the leading and trailing edges of the blades as well as in the shroud surface close to the leading edge of the blades, and the value of the entropy production rate is up to 106 W/m3/K. The areas of high energy loss in the leading edge of the blades as well as the trailing edge show a curved arc, and the energy loss is decreasing as it moves away from the shroud surface and closer to the hub surface. The high energy loss areas at the leading and trailing edges of the blades are curved, and the energy loss decreases as they move away from the shroud surface and closer to the hub surface. The energy loss at the pressure surface of the blade is relatively small, about 5 × 105 W/m3/K, which is mainly concentrated near the leading edge of the blade near the shroud surface and the trailing edge of the blade near the hub surface. Such energy loss corresponds to the vortex LCS at the top of the impeller, and the two mirror each other.

Originality/value

This study focuses on the CFD numerical simulation and analysis of the vortex stacking problem at the top of the impeller of a high-speed fuel pump, mainly using LCS and entropy production theory to visualize the vortex at the top of the impeller as well as quantitatively analyzing the energy loss caused by the vortex at the top of the impeller. By combining the two methods, the two are well verified with each other that the stacking problem of the vortex at the top of the impeller and the location of the energy loss caused by the vortex are consistent with the vortex location. Such a method can reveal the problem of vortex buildup at the top of the lobe well, and provide a novel guidance idea for improving the performance of high-speed fuel pumps.

Details

Engineering Computations, vol. 41 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 September 2024

Qianling Jiang, Jue Qian and Yong Zang

The rapid development and widespread application of artificial intelligence tools have raised concerns about how designers are embracing these technologies. This study…

Abstract

Purpose

The rapid development and widespread application of artificial intelligence tools have raised concerns about how designers are embracing these technologies. This study investigates the factors influencing designers' behavioral intention to use and disclose the use of generative artificial intelligence.

Design/methodology/approach

A quantitative research approach was employed, designing a structured questionnaire based on Self-Determination Theory to assess the impact of various psychological and social dimensions. The questionnaire included dimensions such as autonomy, competence, relatedness, social influence, value fit and social innovativeness. A Partial Least Squares Structural Equation Modeling analysis was conducted on 309 valid responses from diverse design fields.

Findings

Competence and relatedness are significant factors influencing designers' continuance intention to use generative artificial intelligence. Although autonomy does not significantly affect continuance intention, it plays a crucial role in the decision to disclose artificial intelligence participation. Social influence and value fit significantly shape autonomy, competence and relatedness, while the impact of social innovativeness is relatively limited.

Originality/value

This study clarifies the factors influencing designers' continuance intention and disclosure of generative artificial intelligence tools from both individual and social dimensions, enhancing the understanding of the relationship between designers and generative artificial intelligence tools. It provides valuable insights for the development of artificial intelligence technology and the future trends in the design industry, offering significant theoretical and practical value.

Article
Publication date: 6 August 2024

Sooin Kim, Atefe Makhmalbaf and Mohsen Shahandashti

This research aims to forecast the ABI as a leading indicator of U.S. construction activities, applying multivariate machine learning predictive models over different horizons and…

Abstract

Purpose

This research aims to forecast the ABI as a leading indicator of U.S. construction activities, applying multivariate machine learning predictive models over different horizons and utilizing the nonlinear and long-term dependencies between the ABI and macroeconomic and construction market variables. To assess the applicability of the machine learning models, six multivariate machine learning predictive models were developed considering the relationships between the ABI and other construction market and macroeconomic variables. The forecasting performances of the developed predictive models were evaluated in different forecasting scenarios, such as short-term, medium-term, and long-term horizons comparable to the actual timelines of construction projects.

Design/methodology/approach

The architecture billings index (ABI) as a macroeconomic indicator is published monthly by the American Institute of Architects (AIA) to evaluate business conditions and track construction market movements. The current research developed multivariate machine learning models to forecast ABI data for different time horizons. Different macroeconomic and construction market variables, including Gross Domestic Product (GDP), Total Nonresidential Construction Spending, Project Inquiries, and Design Contracts data were considered for predicting future ABI values. The forecasting accuracies of the machine learning models were validated and compared using the short-term (one-year-ahead), medium-term (three-year-ahead), and long-term (five-year-ahead) ABI testing datasets.

Findings

The experimental results show that Long Short Term Memory (LSTM) provides the highest accuracy among the machine learning and traditional time-series forecasting models such as Vector Error Correction Model (VECM) or seasonal ARIMA in forecasting the ABIs over all the forecasting horizons. This is because of the strengths of LSTM for forecasting temporal time series by solving vanishing or exploding gradient problems and learning long-term dependencies in sequential ABI time series. The findings of this research highlight the applicability of machine learning predictive models for forecasting the ABI as a leading indicator of construction activities, business conditions, and market movements.

Practical implications

The architecture, engineering, and construction (AEC) industry practitioners, investment groups, media outlets, and business leaders refer to ABI as a macroeconomic indicator to evaluate business conditions and track construction market movements. It is crucial to forecast the ABI accurately for strategic planning and preemptive risk management in fluctuating AEC business cycles. For example, cost estimators and engineers who forecast the ABI to predict future demand for architectural services and construction activities can prepare and price their bids more strategically to avoid a bid loss or profit loss.

Originality/value

The ABI data have been forecasted and modeled using linear time series models. However, linear time series models often fail to capture nonlinear patterns, interactions, and dependencies among variables, which can be handled by machine learning models in a more flexible manner. Despite the strength of machine learning models to capture nonlinear patterns and relationships between variables, the applicability and forecasting performance of multivariate machine learning models have not been investigated for ABI forecasting problems. This research first attempted to forecast ABI data for different time horizons using multivariate machine learning predictive models using different macroeconomic and construction market variables.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 364