Search results

1 – 5 of 5
Article
Publication date: 18 April 2024

Li Li, Tong Huang, Chujia Pan, J.F. Pan and Wenbin Su

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the…

Abstract

Purpose

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.

Design/methodology/approach

An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.

Findings

The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.

Originality/value

The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 19 April 2024

Lars Mjøset, Roel Meijer, Nils Butenschøn and Kristian Berg Harpviken

This study employs Stein Rokkan's methodological approach to analyse state formation in the Greater Middle East. It develops a conceptual framework distinguishing colonial…

Abstract

This study employs Stein Rokkan's methodological approach to analyse state formation in the Greater Middle East. It develops a conceptual framework distinguishing colonial, populist and democratic pacts, suitable for analysis of state formation and nation-building through to the present period. The framework relies on historical institutionalism. The methodology, however, is Rokkan's. The initial conceptual analysis also specifies differences between European and the Middle Eastern state formation processes. It is followed by a brief and selective discussion of historical preconditions. Next, the method of plotting singular cases into conceptual-typological maps is applied to 20 cases in the Greater Middle East (including Afghanistan, Iran and Turkey). For reasons of space, the empirical analysis is limited to the colonial period (1870s to the end of World War 1). Three typologies are combined into one conceptual-typological map of this period. The vertical left-hand axis provides a composite typology that clarifies cultural-territorial preconditions. The horizontal axis specifies transformations of the region's agrarian class structures since the mid-19th century reforms. The right-hand vertical axis provides a four-layered typology of processes of external intervention. A final section presents selected comparative case reconstructions. To the authors' knowledge, this is the first time such a Rokkan-style conceptual-typological map has been constructed for a non-European region.

Details

A Comparative Historical and Typological Approach to the Middle Eastern State System
Type: Book
ISBN: 978-1-83753-122-6

Keywords

Article
Publication date: 17 February 2022

Md. Habibur Rahman Sobuz, Md. Montaseer Meraz, Ayan Saha, Abu Sayed Mohammad Akid, Noor Md. Sadiqul Hasan, Mizanoor Rahman and Md. Abu Safayet

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional…

Abstract

Purpose

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional mathematical models are used to examine the responses of multistory flexibly connected frames subjected to earthquake excitations.

Design/methodology/approach

This paper examined a G + 50 multi-storied high-rise structure, which is analyzed using different combinations of moment resistant frames, shear walls, seismic outrigger systems and seismic dampers to observe the effectiveness during ground motion against soft soil conditions. The damping coefficients of added dampers, providing both upper and lower levels are taken into consideration. A finite element modeling and analysis is generated. Then the nature of the structure exposed to ground motion is captured with response spectrum analysis, using BNBC-2020 for four different seismic zones in Bangladesh.

Findings

The response of the structure is investigated according to the amplitude of the displacements, drifts, base shear, stiffness and torsion. The numerical results indicate that adding dampers at the base level can be the most effective against seismic control. However, placing an outrigger bracing system at the middle and top end with shear wall can be the most effective for controlling displacements and drifts.

Originality/value

The response of high-rise structures to seismic forces in Bangladesh’s soft soil conditions is examined at various levels in this study. This study is an original research which contributes to the knowledge to build earthquake resisting high-rises in Bangladesh.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 April 2024

Anna Visvizi, Radosław Malik, Gianluca Maria Guazzo and Vilma Çekani

Against the background of the I50 paradigm, this paper queries in what ways blockchain and blockchain-based applications deployed in the smart city context facilitate the…

36

Abstract

Purpose

Against the background of the I50 paradigm, this paper queries in what ways blockchain and blockchain-based applications deployed in the smart city context facilitate the integration of the I50 paradigm in smart urban contexts.

Design/methodology/approach

A mixed methods approach is applied. First, by means of desk research and thematic literature review, a conceptual model integrating the I50 paradigm, smart city and blockchain-based solutions is built. Second, science mapping bibliometric analysis (SciMat) based on keywords’ co-occurrence is applied to a sample of 491 research articles to identify key domains of blockchain-based applications’ use in smart city. Third, a semi-systematic literature review complements insights gained through SciMat. Fourth, the findings are interpreted through the precepts of the conceptual model devised earlier.

Findings

The key blockchain-based applications in smart cities pertain to two domains, i.e. the foundational, service facilitation-oriented domain, including security (and safety), networks, computing, resource management and the service delivery-oriented domain, including mobility, energy and healthcare. Blockchain serves as the key building block for applications developed to deliver functions specific to each of the thus identified domains. A substantial layering of blockchain-based tools and applications is necessary to advance from the less to the more complex functional domains of the smart city.

Originality/value

At the conceptual level, the intricacies of the (making of the) I50 paradigm are discussed and a case for I50 – smart city – blockchain nexus is made. Easton’s input–output model as well as constructivism is referenced. At the empirical level, the key major domains of blockchain-based applications are discussed; those that bear the prospect of integrating the I50 paradigm in the smart city are highlighted. At the methodological level, a strategic move is made aimed at restoring the literature review’s role as subservient to the key line of exploration, to justify and ultimately support it, rather than to showcase the literature review as the ultimate purpose for itself.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 5 of 5