Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 20 August 2024

Miguel Araya-Calvo, Antti Järvenpää, Timo Rautio, Johan Enrique Morales-Sanchez and Teodolito Guillen-Girón

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder…

Abstract

Purpose

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder Bed Fusion Laser Beam (PBF-LB). This study aims to understand how complex lattice structures and post-manufacturing treatment, particularly chemical etching, affect the mechanical properties, surface morphology, fatigue resistance and biocompatibility of these metamaterials for biomedical applications.

Design/methodology/approach

Selective Laser Melting (SLM) technology was used to fabricate TPMS-gyroid and Voronoi stochastic designs with three different relative densities (0.2, 0.3 and 0.4) in Ti-6Al-4V ELI alloy. The as-built samples underwent a chemical etching process to enhance surface quality. Mechanical characterization included static compression and dynamic fatigue testing, complemented by scanning electron microscopy (SEM) for surface and failure analysis. The biocompatibility of the samples was assessed through in-vitro cell viability assays using the Alamar Blue assay and cell proliferation studies.

Findings

Chemical etching significantly improves the surface morphology, mechanical properties and fatigue resistance of both TPMS-gyroid and stochastic structures. Gyroid structures demonstrated superior mechanical performance and fatigue resistance compared to stochastic structures, with etching providing more pronounced benefits in these aspects. In-vitro biocompatibility tests showed high cytocompatibility for both as-built and etched samples, with etched samples exhibiting notably improved cell viability. The study also highlights the importance of design and post-processing in optimizing the performance of Ti64 components for biomedical applications.

Originality/value

The comparative analysis between as-built and etched conditions, alongside considering different lattice designs, provides valuable information for developing advanced biomedical implants. The demonstration of enhanced fatigue resistance and biocompatibility through etching adds significant value to the field of additive manufacturing, suggesting new avenues for designing and post-processing implantable devices.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1437

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 September 2024

Hasith Chathuranga Victar and K.G.A.S. Waidyasekara

The concept of Circular Economy (CE) has gained significant traction in addressing the issue of Construction and Demolition (C&D) waste, which is generated because of global…

Abstract

Purpose

The concept of Circular Economy (CE) has gained significant traction in addressing the issue of Construction and Demolition (C&D) waste, which is generated because of global urbanisation and urban renewal. Therefore, this research aims to explore the applicability of CE strategies to minimise the C&D Waste Management (WM) issues in Sri Lanka considering the preconstruction stage of the building project.

Design/methodology/approach

The research adopted a qualitative approach, using three expert interview rounds with the Delphi technique. In each round, 17, 15 and 12 experts were involved. A manual content analysis method was used to analyse the collected data.

Findings

Findings uncovered effective strategies in CE to address the 14 issues within C&D WM and its effects on the project management iron triangle in Sri Lanka. Integrating CE strategies within the construction sector to tackle C&D WM issues can significantly contribute to establishing a more sustainable, robust and resource-conscious built environment. By adopting CE strategies such as design for adaptability of existing buildings and design for disassembly, construction projects can optimise the project's timeline, cost and quality factors.

Originality/value

This will help to minimise the demand for virgin materials and reduce the volume of waste generated. Using recycled materials also helps close the loop of the materials cycle, thereby contributing to the CE. Also, this research contributes uniquely by offering practical, context-driven solutions that align with Sri Lanka’s construction sector.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Book part
Publication date: 4 October 2024

Martin J. Baptist

This chapter examines the Netherlands’ challenges in safeguarding its low-lying coastline against rising sea levels and the consequences of coastal defense strategies on marine…

Abstract

This chapter examines the Netherlands’ challenges in safeguarding its low-lying coastline against rising sea levels and the consequences of coastal defense strategies on marine life, particularly in relation to SDG14. Sea-level rise necessitates increased soft coastal defense strategies, affecting seafloor areas and marine biodiversity through sand extraction and sand nourishments. The use of hard structures for coastal defense contributes to the loss of natural coastal habitats, raising biodiversity concerns. The chapter explores the potential benefits of artificial hard surfaces as marine habitats, emphasising the need for careful design to prevent ecological problems caused by invasive species. Strategies for enhancing biodiversity on human-made hard substrate structures, including material variations, hole drilling, and adaptations, are discussed. The ecological impact of marine sand extraction is examined, detailing its effects on benthic fauna, sediment characteristics, primary production, and fish and shrimp populations. Solutions proposed include improved design for mining areas, ecosystem-based rules for extraction sites, and ecologically enriched extraction areas. The ecosystem effects of marine sand nourishments are also analysed, considering the impact on habitat suitability for various species. The chemical effects of anaerobic sediment and recovery challenges are addressed. Mitigation measures, such as strategic nourishment location and timing, adherence to local morphology, and technical solutions, are suggested. The chapter underscores the importance of education in Nature-based Solutions and announces the launch of a new BSc programme in Marine Sciences at Wageningen University & Research, integrating social and ecological knowledge to address challenges in seas, oceans, and coastal regions and support SDG14 goals.

Details

Higher Education and SDG14: Life Below Water
Type: Book
ISBN: 978-1-83549-250-5

Keywords

Article
Publication date: 10 August 2023

Nor Salwani Hashim, Fatimah De’nan and Norbaya Omar

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one…

Abstract

Purpose

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one type that has been widely used because of its simplicity in fabrication and rapid site erection. The purpose of this study is to determine the moment-rotation curve, moment of resistance (MR) and mode of failure, and the results were compared with existing results for normal flat web connections.

Design/methodology/approach

In this study, the connection modeled was the flush end-plate welded with triangular web profile (TriWP) steel beam section and then bolted to a UKC column flange. The bolted flush end-plate semi-rigid beam to column connection was modeled using finite element software. The specimen was modeled using LUSAS 14.3 finite element software, with dimensions and parameters of the finite element model sizes being 200 × 200 × 49.9 UKC, 200 × 100 × 17.8 UKB and 200 × 100 with a thickness of 20 mm for the endplate.

Findings

It can be concluded that the MR obtained from the TriWP steel beam section is different from that of the normal flat web steel beam by 28%. The value of MR for the TriWP beam section is lower than that of the normal flat web beam section, but the moment ultimate is higher by 21% than the normal flat web. Therefore, it can be concluded that the TriWP section can resist more acting force than the normal flat web section and is suitable to be used as a new proposed shape to replace the normal flat web section for a certain steel structure based on the end-plate connection behavior.

Originality/value

As a result, the TriWP section has better performance than the flat web section in resisting MR behavior.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 March 2023

Ghassan Almasabha, Ali Shehadeh, Odey Alshboul and Omar Al Hattamleh

Buried pipelines under various soil embankment heights are cost-effective alternatives to transporting liquid products. This paper aims to assist pipeline architects and…

Abstract

Purpose

Buried pipelines under various soil embankment heights are cost-effective alternatives to transporting liquid products. This paper aims to assist pipeline architects and professionals in selecting the most cost-effective buried reinforced concrete pipelines under deep embankment soil with minor structural reinforcement while meeting shear stress requirements, safety and reliability constraints.

Design/methodology/approach

It is unfeasible to experimentally assess pipeline efficiency with high soil fill depth. Thus, to fill this gap, this research uses a dependable finite element analysis (FEA) to conduct a parametric study and carry out such an issue. This research considered reinforced concrete pipes with diameters of 25, 50, 75, 100, 125 and 150 cm at depths of 5, 10, 15 and 20 m.

Findings

According to this research, the proposed best pipeline diameter-to-thickness (D/T) proportions for soil embankment heights 5, 10, 15 and 20 m are 8.75, 4.8, 3.5 and 3.1, correspondingly. The cost-effective reinforced concrete (RC) pipeline thickness dramatically rises if the soil embankment reaches 20 m, indicating that the soil embankment depth highly influences it. Most of the analyzed reinforced concrete pipelines had a maximum deflection value of less than 1 cm, telling that the FEA accurately identified the pipeline width, needed flexural steel reinforcement, and concrete crack width while avoiding significant distortion.

Originality/value

The cost-effective thickness for the analyzed structured concrete pipes was calculated by considering the lowest required value of steel reinforcement. An algorithm was developed based on the parametric scientific findings to predict the ideal pipeline D/T ratio. A construction case study was also shown to assist architects and professionals in determining the best reinforced concrete pipeline geometry for a specific soil embankment height.

Details

Construction Innovation , vol. 24 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2023

Mustafa S. Al-Khazraji, S.H. Bakhy and M.J. Jweeg

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and…

Abstract

Purpose

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and limitations. The other purpose of this paper is to familiarize the researchers with the available developments in manufacturing sandwich structures.

Design/methodology/approach

The most recent research articles in the field of manufacturing various composite sandwich structures were reviewed. The review process started by categorizing the available sandwich manufacturing techniques into nine main categories according to the method of production and the equipment used. The review is followed by outlining some automatic production concepts toward composite sandwich automated manufacturing. A brief summary of the sandwich manufacturing techniques is given at the end of this article, with recommendations for future work.

Findings

It has been found that several composite sandwich manufacturing techniques were proposed in the literature. The diversity of the manufacturing techniques arises from the variety of the materials as well as the configurations of the final product. Additive manufacturing techniques represent the most recent trend in composite sandwich manufacturing.

Originality/value

This work is valuable for all researchers in the field of composite sandwich structures to keep up with the most recent advancements in this field. Furthermore, this review paper can be considered as a guideline for researchers who are intended to perform further research on composite sandwich structures.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 21 May 2024

Luca Camanzi, Sina Ahmadi Kaliji, Paolo Prosperi, Laurick Collewet, Reem El Khechen, Anastasios Ch. Michailidis, Chrysanthi Charatsari, Evagelos D. Lioutas, Marcello De Rosa and Martina Francescone

The aim of this study was to investigate consumer preferences and profile their food-related lifestyles, as well as to identify consumer groups with similar attitudes/behaviours…

706

Abstract

Purpose

The aim of this study was to investigate consumer preferences and profile their food-related lifestyles, as well as to identify consumer groups with similar attitudes/behaviours in the Euro-Mediterranean fruit and vegetable market.

Design/methodology/approach

A structured questionnaire was designed drawing from the food related lifestyles instrument and including other factors relevant to fruit and vegetable consumer preferences. The data were collected in an online survey with 925 participants in France, Greece, and Italy. A principal component analysis was conducted to interpret and examine consumers' fruit and vegetable related lifestyles. In addition, a cluster analysis was performed to identify different consumer segments, based on the core dimensions of the food-related lifestyle approach.

Findings

In each country, three primary consumer segments were distinguished. Health-conscious individuals were predominant in France and Greece, while quality-conscious consumers were prevalent in Italy. These classifications were determined considering various factors such as purchase motivation, perception of product quality, health concerns, environmental certifications, and price sensitivity.

Originality/value

The food-related lifestyle approach has been adapted instrument to create a customised survey instrument specifically designed to capture the intricacies of fruit and vegetable consumer preferences and priorities in three Euro-Mediterranean Countries.

Article
Publication date: 23 September 2024

Pedro Mêda, Eilif Hjelseth, Diego Calvetti and Hipólito Sousa

This study explores the significance and implementation priorities for Digital Product Passports (DPP) in the context of building renovation projects. It aims to reveal…

Abstract

Purpose

This study explores the significance and implementation priorities for Digital Product Passports (DPP) in the context of building renovation projects. It aims to reveal bottlenecks and how a data-driven workflow bridges the DPP understanding/implementation gap, facilitating the transition towards practices aligned with the EU Green Deal goals.

Design/methodology/approach

A mixed-methods embedded design was employed for a real-case study exploration. Desk research and field observations ground the two-level analysis combining project documentation, namely the Bill of Quantities (BoQ), with different criteria in digitalisation and sustainability, such as economic ratio, 3D modelling, waste management, hazards, energy performance and facility management. All results were interpreted from the DPP lens.

Findings

The analysis revealed a system for identifying building products representing a significant part of the renovation budget. About 11 priority DPPs were found. Some are crucial for both the deconstruction and construction phases, highlighting the need for an incremental and strategic approach to DPP implementation.

Research limitations/implications

The study is limited to a single case study. Constraints are minimised given the sample's archetype representativeness. The outcomes introduce the need for strategic thinking for incremental DPP implementation. Future research will explore additional criteria and cases.

Originality/value

The research has resulted in a classification framework for DPPs' significance and priority, which is provided with case results. The outcome of the framework provides views on concept alignment to make the implementation in construction more straightforward. Its practical use can be replicated in other projects, emphasizing the importance of data structure and management for the circular economy.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of over 1000