Search results

1 – 10 of over 1000
Article
Publication date: 15 March 2021

Sofiene Dellagi and Mohamed Noomane Darghouth

In this paper, a maintenance strategy based on improved imperfect maintenance actions with stochastic repair times for multiperiod randomly failing equipment is developed. The…

Abstract

Purpose

In this paper, a maintenance strategy based on improved imperfect maintenance actions with stochastic repair times for multiperiod randomly failing equipment is developed. The main objective is to minimize the total maintenance cost by jointly finding the optimal preventive maintenance (PM) cycle and planning horizon.

Design/methodology/approach

A model based on the mathematical theory of reliability is developed to minimize the total maintenance cost by jointly finding the optimal couple: PM cycle T* and planning horizon H*. The proposed model aims to characterize the evolutionary impact of imperfect PM actions on the equipment failure rate and the resulting mean number of failures. The conventional threshold accepting (TA) algorithm is implemented to solve the proposed model. A numerical example for a given set of input parameters is presented in order to show the usefulness of the proposed model. A sensitivity analysis of some of the key parameters is performed to demonstrate the coherence of the developed maintenance policy.

Findings

The obtained results showed a sensitive trade-off between PM frequency and the total maintenance cost. Performing PM actions more frequently helps significantly to reduce the expected number of corrective maintenance actions and the corresponding total cost. It has also been found that improving the efficiency of the PM actions allows for maintaining the equipment less frequently by increasing the time between successive PM actions.

Research limitations/implications

Given the complexity of the objective function to be minimized and the stochastic nature of the model's parameters, the authors limited this study to equally cyclic production periods over the planning horizon.

Practical implications

The present model aims to provide an integrated maintenance/production comprehensive framework to assist planners in establishing maintenance schedules considering multiperiod randomly failing production systems and the evolutionary impact of imperfect PM actions on the equipment failure rate.

Originality/value

Contrary to the majority of existing works in the literature dealing with maintenance strategies, the authors consider that repair times are stochastic to provide a more realistic framework. In addition, the developed model considers the impact of imperfect maintenance on the equipment's mean time to failure. Thus, the evolutionary impact of imperfect PM actions on the equipment failure rate and the resulting mean number of failures is characterized. Simultaneously, the production planning horizon along with the length of each PM cycle is optimized in order to minimize the total maintenance cost over the planning horizon.

Details

Journal of Quality in Maintenance Engineering, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 6 August 2019

Xinfeng Lai, Zhixiang Chen and Bhaba R. Sarker

The purpose of this paper is to study a production lot sizing problem with consideration of imperfect manufacturing and emergency maintenance policy, providing managerial…

Abstract

Purpose

The purpose of this paper is to study a production lot sizing problem with consideration of imperfect manufacturing and emergency maintenance policy, providing managerial implication for practitioners.

Design/methodology/approach

In this study, the authors introduce two models, where in Model I, shortages are not allowed and repair times are negligible. In Model II, shortages are allowed and are partially backlogged, and repair times are assumed to be exponentially distributed, algorithm is developed to solve the models, numerical examples were demonstrated the applications.

Findings

Results show that in the Model I, demand rate is the most significant parameter affecting the average expected cost, whereas the time needed to breakdown after machine shift is the most significant factor affecting the production lot size. Therefore, reduction in the time needed to breakdown after machine shift would be helpful for determining an appropriate production lot size in Model I. In Model II, repair time parameter is the most significant factor affecting the average expected cost. Reducing the value of machine shift parameter would be helpful for determining an adequate production lot size and reducing decision risk.

Practical implications

This paper can provide important reference value for practitioners with managerial implication of how to effectively maintain equipment, i.e. how to make product lot size considering the influence of the maintenance policy.

Originality/value

From the aspect of academia, this paper provides a solution to the optimal production lot sizing decision for an imperfect manufacturing system with consideration of machine breakdown and emergency maintenance, which is a supplement to imperfect EMQ model.

Details

Kybernetes, vol. 49 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 August 2022

Monika Saini, Deepak Sinwar, Alapati Manas Swarith and Ashish Kumar

Reliability and maintainability estimation of any system depends on the identification of the best-fitted probability distribution of failure and repair rates. The parameters of…

Abstract

Purpose

Reliability and maintainability estimation of any system depends on the identification of the best-fitted probability distribution of failure and repair rates. The parameters of the best-fitted probability distribution are also contributing significantly to reliability estimation. In this work, a case study of load haul dump (LHD) machines is illustrated that consider the optimization of failure and repair rate parameters using two well established metaheuristic approaches, namely, genetic algorithm (GA) and particle swarm optimization (PSO). This paper aims to analyze the aforementioned points.

Design/methodology/approach

The data on time between failures (TBF) and time to repairs (TTR) are collected for a LHD machine. The descriptive statistical analysis of TBF & TTR data is performed, trend and serial correlation tested and using Anderson–Darling (AD) value best-fitted distributions are identified for repair and failure times of various subsystems. The traditional methods of estimation like maximum likelihood estimation, method of moments, least-square estimation method help only in finding the local solution. Here, for finding the global solution two well-known metaheuristic approaches are applied.

Findings

The reliability of the LHD machine after 60 days on the real data set is 28.55%, using GA on 250 generations is 17.64%, and using PSO on 100 generations and 100 iterations is 30.25%. The PSO technique gives the global best value of reliability.

Practical implications

The present work will be very convenient for reliability engineers, researchers and maintenance managers to understand the failure and repair pattern of LHD machines. The same methodology can be applied in other process industries also.

Originality/value

In this case study, initially likelihood function of the best-fitted distribution is optimized by GA and PSO. Reliability and maintainability of LHD machines evaluated by the traditional approach, GA and PSO are compared. These results will be very helpful for maintenance engineers to plan new maintenance strategies for better functioning of LHD machines.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 23 August 2019

Sahar Tadayonirad, Hany Seidgar, Hamed Fazlollahtabar and Rasoul Shafaei

In real manufacturing systems, schedules are often disrupted with uncertainty factors such as random machine breakdown, random process time, random job arrivals or job…

Abstract

Purpose

In real manufacturing systems, schedules are often disrupted with uncertainty factors such as random machine breakdown, random process time, random job arrivals or job cancellations. This paper aims to investigate robust scheduling for a two-stage assembly flow shop scheduling with random machine breakdowns and considers two objectives makespan and robustness simultaneously.

Design/methodology/approach

Owing to its structural and algorithmic complexity, the authors proposed imperialist competitive algorithm (ICA), genetic algorithm (GA) and hybridized with simulation techniques for handling these complexities. For better efficiency of the proposed algorithms, the authors used artificial neural network (ANN) to predict the parameters of the proposed algorithms in uncertain condition. Also Taguchi method is applied for analyzing the effect of the parameters of the problem on each other and quality of solutions.

Findings

Finally, experimental study and analysis of variance (ANOVA) is done to investigate the effect of different proposed measures on the performance of the obtained results. ANOVA's results indicate the job and weight of makespan factors have a significant impact on the robustness of the proposed meta-heuristics algorithms. Also, it is obvious that the most effective parameter on the robustness for GA and ICA is job.

Originality/value

Robustness is calculated by the expected value of the relative difference between the deterministic and actual makespan.

Article
Publication date: 13 February 2007

Chin‐Yen Lin, Tsung‐Hsien Kuo, Ya‐Chi Huang, Chinho Lin and Li‐An Ho

The purpose of this paper is to propose a model that captures the fuzzy events is proposed to find the optimal periods of warranty policies. The model considers repair and…

Abstract

Purpose

The purpose of this paper is to propose a model that captures the fuzzy events is proposed to find the optimal periods of warranty policies. The model considers repair and replacement actions in the warranty period.

Design/methodology/approach

The study transforms the reliability of a traditional set to a fuzzy reliability set that models a problem. The optimality of the model is explored with classical optimal theory. Also, a numerical example is presented to describe how to find an optimal warranty policy.

Findings

The study proves that the optimality of a warranty model can be used to find the optimal warranty policy in a fuzzy environment.

Originality/value

The model is useful for firms in deciding what the maintenance strategy and warranty period should be in a fuzzy environment.

Details

International Journal of Quality & Reliability Management, vol. 24 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 10 March 2022

Na Tao

In this study, the focus was shifted from repairing durable goods to achieving healthier ecology, making durable goods more secure in turn. This study introduced preventive…

Abstract

Purpose

In this study, the focus was shifted from repairing durable goods to achieving healthier ecology, making durable goods more secure in turn. This study introduced preventive maintenance behavior to trace the ex-post control of “curling” back to the ex-post control of “self-healing.” This study tries to close the gap between the human repair of machines and their “self-curing.” Finally, the author makes the machines healthier.

Design/methodology/approach

The paper constructed a mathematical model of preventive maintenance behavior during a specific period for durable consumer goods. The author builds a simulation function of the two-stage preventative maintenance behavior relations. The study used simulations to analyze the influencing relationship and differences between three preventive maintenance behavior elements to basic warranty preventive maintenance (BWPM) behavior and extended warranty preventive maintenance (EWPM) behavior.

Findings

Both BWPM behavior and EWPM behavior were affected by the preventive maintenance (PM) behavioral components in different ways. The influence paths of the two warranty periods affected by PM behavior were also different.

Research limitations/implications

This study introduced PM behavior to trace the ex-post control of “curling” back to the ex-post control of “self-healing.” This study adopted the human–machine interaction mode to improve durable goods' self-healing ability during operation and enable a more effective and sustainable development.

Practical implications

This study’s conclusions may help manufacturers guide PM behavior in a way that achieves “self-healing” of the durable goods.

Originality/value

The author opened a “black box” of PM behaviors and analyzed their components. The internal structure relation of PM behavior is built and the closed-loop system of spatial structure is formed.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 24 November 2023

Iman Rastgar, Javad Rezaeian, Iraj Mahdavi and Parviz Fattahi

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize…

Abstract

Purpose

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize production and scheduling decisions.

Design/methodology/approach

This study presents a multi-objective optimization framework to make production planning, scheduling and maintenance decisions. An epsilon-constraint method is used to solve small instances of the model, while new hybrid optimization algorithms, including multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm, multi-objective harmony search and improved multi-objective harmony search (IMOHS) are developed to address the high complexity of large-scale problems.

Findings

The computational results demonstrate that the metaheuristic algorithms are effective in obtaining economic solutions within a reasonable computational time. In particular, the results show that the IMOHS algorithm is able to provide optimal Pareto solutions for the proposed model compared to the other three algorithms.

Originality/value

This study presents a new mathematical model that simultaneously determines green production planning and scheduling decisions by minimizing the sum of the total cost, makespan, lateness and energy consumption criteria. Integrating production and scheduling of a shop floor is critical for achieving optimal operational performance in production planning. To the best of the authors' knowledge, the integration of production planning and maintenance has not been adequately addressed.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 22 April 2022

Lijun Shang, Qingan Qiu, Cang Wu and Yongjun Du

The study aims to design the limited number of random working cycle as a warranty term and propose two types of warranties, which can help manufacturers to ensure the product…

Abstract

Purpose

The study aims to design the limited number of random working cycle as a warranty term and propose two types of warranties, which can help manufacturers to ensure the product reliability during the warranty period. By extending the proposed warranty to the consumer's post-warranty maintenance model, besides the authors investigate two kinds of random maintenance policies to sustain the post-warranty reliability, i.e. random replacement first and random replacement last. By integrating depreciation expense depending on working time, the cost rate is constructed for each random maintenance policy and some special cases are provided by discussing parameters in cost rates. Finally, sensitivities on both the proposed warranty and random maintenance policies are analyzed in numerical experiments.

Design/methodology/approach

The working cycle of products can be monitored by advanced sensors and measuring technologies. By monitoring the working cycle, manufacturers can design warranty policies to ensure product reliability performance and consumers can model the post-warranty maintenance to sustain the post-warranty reliability. In this article, the authors design a limited number of random working cycles as a warranty term and propose two types of warranties, which can help manufacturers to ensure the product reliability performance during the warranty period. By extending a proposed warranty to the consumer's post-warranty maintenance model, the authors investigate two kinds of random replacement policies to sustain the post-warranty reliability, i.e. random replacement first and random replacement last. By integrating a depreciation expense depending on working time, the cost rate is constructed for each random replacement and some special cases are provided by discussing parameters in the cost rate. Finally, sensitivities to both the proposed warranties and random replacements are analyzed in numerical experiments.

Findings

It is shown that the manufacturer can control the warranty cost by limiting number of random working cycle. For the consumer, when the number of random working cycle is designed as a greater warranty limit, the cost rate can be reduced while the post-warranty period can't be lengthened.

Originality/value

The contribution of this article can be highlighted in two key aspects: (1) the authors investigate early warranties to ensure reliability performance of the product which executes successively projects at random working cycles; (2) by integrating random working cycles into the post-warranty period, the authors is the first to investigate random maintenance policy to sustain the post-warranty reliability from the consumer's perspective, which seldom appears in the existing literature.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 14 June 2022

Swee Kuik, Joowon Ban, Li Diong and Xiaolie Qi

This paper proposes optimisation models to evaluate and examine the selling of extended warranty policies in terms of improved profits in producing/marketing remanufactured…

Abstract

Purpose

This paper proposes optimisation models to evaluate and examine the selling of extended warranty policies in terms of improved profits in producing/marketing remanufactured products. These models are numerically solved using a quadratic programming solution approach and implemented in the decision support system (DSS).

Design/methodology/approach

The purpose of this paper is to develop the optimisation models for a DSS and evaluate different warranty policies for buyers.

Findings

This study has demonstrated the flexibility and usefulness of a model-driven DSS for the quality and warranty management, which is applied to examine and evaluate different configurations (i.e. component reuse, rebuild and recycle) for remanufactured products and propose the selling of extended warranty policies for buyers.

Research limitations/implications

The developed model-driven DSS can assist manufacturers to select and increase the number of components, e.g. to be reused, rebuilt, and recycled for producing a remanufactured product and propose suitable warranty policies for buyers. However, this study focusses only on the evaluation of warranty policies for specific remanufactured products in a DSS, i.e. types of air compressors for production operations in manufacturing industry.

Originality/value

This study developed optimisation models to be used in a DSS for proposing the selling of extended warranty of a remanufactured product to improve customer satisfaction and maximise the gained profits for manufacturers.

Details

The TQM Journal, vol. 35 no. 6
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 1 June 1998

A.S. Humphrey, G.D. Taylor and T.L. Landers

In this article, we present the results of a study examining the behavior of various inventory stocking methodologies in repair/rework operations. A major area of focus is on the…

1490

Abstract

In this article, we present the results of a study examining the behavior of various inventory stocking methodologies in repair/rework operations. A major area of focus is on the sensitivity of key model parameters to stochastic replenishment lead times, product demand, and overhaul factors. A case study in a US Army depot provides validation for the effort. Simulation results indicate the current depot stocking methodologies are adequate in ideal conditions, but are less effective in more challenging and realistic scenarios. Results also indicate that some commonly used inventory models are quite robust to stochastic operating parameters in the unique/rework environment.

Details

International Journal of Operations & Production Management, vol. 18 no. 6
Type: Research Article
ISSN: 0144-3577

Keywords

1 – 10 of over 1000