Search results

1 – 10 of 15
Article
Publication date: 15 November 2021

Priyanka Yadlapalli, D. Bhavana and Suryanarayana Gunnam

Computed tomography (CT) scan can provide valuable information in the diagnosis of lung diseases. To detect the location of the cancerous lung nodules, this work uses novel deep…

Abstract

Purpose

Computed tomography (CT) scan can provide valuable information in the diagnosis of lung diseases. To detect the location of the cancerous lung nodules, this work uses novel deep learning methods. The majority of the early investigations used CT, magnetic resonance and mammography imaging. Using appropriate procedures, the professional doctor in this sector analyses these images to discover and diagnose the various degrees of lung cancer. All of the methods used to discover and detect cancer illnesses are time-consuming, expensive and stressful for the patients. To address all of these issues, appropriate deep learning approaches for analyzing these medical images, which included CT scan images, were utilized.

Design/methodology/approach

Radiologists currently employ chest CT scans to detect lung cancer at an early stage. In certain situations, radiologists' perception plays a critical role in identifying lung melanoma which is incorrectly detected. Deep learning is a new, capable and influential approach for predicting medical images. In this paper, the authors employed deep transfer learning algorithms for intelligent classification of lung nodules. Convolutional neural networks (VGG16, VGG19, MobileNet and DenseNet169) are used to constrain the input and output layers of a chest CT scan image dataset.

Findings

The collection includes normal chest CT scan pictures as well as images from two kinds of lung cancer, squamous and adenocarcinoma impacted chest CT scan images. According to the confusion matrix results, the VGG16 transfer learning technique has the highest accuracy in lung cancer classification with 91.28% accuracy, followed by VGG19 with 89.39%, MobileNet with 85.60% and DenseNet169 with 83.71% accuracy, which is analyzed using Google Collaborator.

Originality/value

The proposed approach using VGG16 maximizes the classification accuracy when compared to VGG19, MobileNet and DenseNet169. The results are validated by computing the confusion matrix for each network type.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 2 February 2024

Bushi Chen, Xunyu Zhong, Han Xie, Pengfei Peng, Huosheng Hu, Xungao Zhong and Qiang Liu

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system…

Abstract

Purpose

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system used by AMRs to overcome challenges in dynamic and changing environments.

Design/methodology/approach

This research introduces SLAM-RAMU, a lifelong SLAM system that addresses these challenges by providing precise and consistent relocalization and autonomous map updating (RAMU). During the mapping process, local odometry is obtained using iterative error state Kalman filtering, while back-end loop detection and global pose graph optimization are used for accurate trajectory correction. In addition, a fast point cloud segmentation module is incorporated to robustly distinguish between floor, walls and roof in the environment. The segmented point clouds are then used to generate a 2.5D grid map, with particular emphasis on floor detection to filter the prior map and eliminate dynamic artifacts. In the positioning process, an initial pose alignment method is designed, which combines 2D branch-and-bound search with 3D iterative closest point registration. This method ensures high accuracy even in scenes with similar characteristics. Subsequently, scan-to-map registration is performed using the segmented point cloud on the prior map. The system also includes a map updating module that takes into account historical point cloud segmentation results. It selectively incorporates or excludes new point cloud data to ensure consistent reflection of the real environment in the map.

Findings

The performance of the SLAM-RAMU system was evaluated in real-world environments and compared against state-of-the-art (SOTA) methods. The results demonstrate that SLAM-RAMU achieves higher mapping quality and relocalization accuracy and exhibits robustness against dynamic obstacles and environmental changes.

Originality/value

Compared to other SOTA methods in simulation and real environments, SLAM-RAMU showed higher mapping quality, faster initial aligning speed and higher repeated localization accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 December 2021

Zhoufeng Liu, Menghan Wang, Chunlei Li, Shumin Ding and Bicao Li

The purpose of this paper is to focus on the design of a dual-branch balance saliency model based on fully convolutional network (FCN) for automatic fabric defect detection, and…

Abstract

Purpose

The purpose of this paper is to focus on the design of a dual-branch balance saliency model based on fully convolutional network (FCN) for automatic fabric defect detection, and improve quality control in textile manufacturing.

Design/methodology/approach

This paper proposed a dual-branch balance saliency model based on discriminative feature for fabric defect detection. A saliency branch is firstly designed to address the problems of scale variation and contextual information integration, which is realized through the cooperation of a multi-scale discriminative feature extraction module (MDFEM) and a bidirectional stage-wise integration module (BSIM). These modules are respectively adopted to extract multi-scale discriminative context information and enrich the contextual information of features at each stage. In addition, another branch is proposed to balance the network, in which a bootstrap refinement module (BRM) is trained to guide the restoration of feature details.

Findings

To evaluate the performance of the proposed network, we conduct extensive experiments, and the experimental results demonstrate that the proposed method outperforms state-of-the-art (SOTA) approaches on seven evaluation metrics. We also conduct adequate ablation analyses that provide a full understanding of the design principles of the proposed method.

Originality/value

The dual-branch balance saliency model was proposed and applied into the fabric defect detection. The qualitative and quantitative experimental results show the effectiveness of the detection method. Therefore, the proposed method can be used for accurate fabric defect detection and even surface defect detection of other industrial products.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 November 2023

Tarun Jaiswal, Manju Pandey and Priyanka Tripathi

The purpose of this study is to investigate and demonstrate the advancements achieved in the field of chest X-ray image captioning through the utilization of dynamic convolutional…

Abstract

Purpose

The purpose of this study is to investigate and demonstrate the advancements achieved in the field of chest X-ray image captioning through the utilization of dynamic convolutional encoder–decoder networks (DyCNN). Typical convolutional neural networks (CNNs) are unable to capture both local and global contextual information effectively and apply a uniform operation to all pixels in an image. To address this, we propose an innovative approach that integrates a dynamic convolution operation at the encoder stage, improving image encoding quality and disease detection. In addition, a decoder based on the gated recurrent unit (GRU) is used for language modeling, and an attention network is incorporated to enhance consistency. This novel combination allows for improved feature extraction, mimicking the expertise of radiologists by selectively focusing on important areas and producing coherent captions with valuable clinical information.

Design/methodology/approach

In this study, we have presented a new report generation approach that utilizes dynamic convolution applied Resnet-101 (DyCNN) as an encoder (Verelst and Tuytelaars, 2019) and GRU as a decoder (Dey and Salemt, 2017; Pan et al., 2020), along with an attention network (see Figure 1). This integration innovatively extends the capabilities of image encoding and sequential caption generation, representing a shift from conventional CNN architectures. With its ability to dynamically adapt receptive fields, the DyCNN excels at capturing features of varying scales within the CXR images. This dynamic adaptability significantly enhances the granularity of feature extraction, enabling precise representation of localized abnormalities and structural intricacies. By incorporating this flexibility into the encoding process, our model can distil meaningful and contextually rich features from the radiographic data. While the attention mechanism enables the model to selectively focus on different regions of the image during caption generation. The attention mechanism enhances the report generation process by allowing the model to assign different importance weights to different regions of the image, mimicking human perception. In parallel, the GRU-based decoder adds a critical dimension to the process by ensuring a smooth, sequential generation of captions.

Findings

The findings of this study highlight the significant advancements achieved in chest X-ray image captioning through the utilization of dynamic convolutional encoder–decoder networks (DyCNN). Experiments conducted using the IU-Chest X-ray datasets showed that the proposed model outperformed other state-of-the-art approaches. The model achieved notable scores, including a BLEU_1 score of 0.591, a BLEU_2 score of 0.347, a BLEU_3 score of 0.277 and a BLEU_4 score of 0.155. These results highlight the efficiency and efficacy of the model in producing precise radiology reports, enhancing image interpretation and clinical decision-making.

Originality/value

This work is the first of its kind, which employs DyCNN as an encoder to extract features from CXR images. In addition, GRU as the decoder for language modeling was utilized and the attention mechanisms into the model architecture were incorporated.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 13 July 2022

Jiqian Dong, Sikai Chen, Mohammad Miralinaghi, Tiantian Chen and Samuel Labi

Perception has been identified as the main cause underlying most autonomous vehicle related accidents. As the key technology in perception, deep learning (DL) based computer…

Abstract

Purpose

Perception has been identified as the main cause underlying most autonomous vehicle related accidents. As the key technology in perception, deep learning (DL) based computer vision models are generally considered to be black boxes due to poor interpretability. These have exacerbated user distrust and further forestalled their widespread deployment in practical usage. This paper aims to develop explainable DL models for autonomous driving by jointly predicting potential driving actions with corresponding explanations. The explainable DL models can not only boost user trust in autonomy but also serve as a diagnostic approach to identify any model deficiencies or limitations during the system development phase.

Design/methodology/approach

This paper proposes an explainable end-to-end autonomous driving system based on “Transformer,” a state-of-the-art self-attention (SA) based model. The model maps visual features from images collected by onboard cameras to guide potential driving actions with corresponding explanations, and aims to achieve soft attention over the image’s global features.

Findings

The results demonstrate the efficacy of the proposed model as it exhibits superior performance (in terms of correct prediction of actions and explanations) compared to the benchmark model by a significant margin with much lower computational cost on a public data set (BDD-OIA). From the ablation studies, the proposed SA module also outperforms other attention mechanisms in feature fusion and can generate meaningful representations for downstream prediction.

Originality/value

In the contexts of situational awareness and driver assistance, the proposed model can perform as a driving alarm system for both human-driven vehicles and autonomous vehicles because it is capable of quickly understanding/characterizing the environment and identifying any infeasible driving actions. In addition, the extra explanation head of the proposed model provides an extra channel for sanity checks to guarantee that the model learns the ideal causal relationships. This provision is critical in the development of autonomous systems.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 29 May 2023

Jinxiang Zeng, Shujin Cao, Yijin Chen, Pei Pan and Yafang Cai

This study analyzed the interdisciplinary characteristics of Chinese research studies in library and information science (LIS) measured by knowledge elements extracted through the…

Abstract

Purpose

This study analyzed the interdisciplinary characteristics of Chinese research studies in library and information science (LIS) measured by knowledge elements extracted through the Lexicon-LSTM model.

Design/methodology/approach

Eight research themes were selected for experiment, with a large-scale (N = 11,625) dataset of research papers from the China National Knowledge Infrastructure (CNKI) database constructed. And it is complemented with multiple corpora. Knowledge elements were extracted through a Lexicon-LSTM model. A subject knowledge graph is constructed to support the searching and classification of knowledge elements. An interdisciplinary-weighted average citation index space was constructed for measuring the interdisciplinary characteristics and contributions based on knowledge elements.

Findings

The empirical research shows that the Lexicon-LSTM model has superiority in the accuracy of extracting knowledge elements. In the field of LIS, the interdisciplinary diversity indicator showed an upward trend from 2011 to 2021, while the disciplinary balance and difference indicators showed a downward trend. The knowledge elements of theory and methodology could be used to detect and measure the interdisciplinary characteristics and contributions.

Originality/value

The extraction of knowledge elements facilitates the discovery of semantic information embedded in academic papers. The knowledge elements were proved feasible for measuring the interdisciplinary characteristics and exploring the changes in the time sequence, which helps for overview the state of the arts and future development trend of the interdisciplinary of research theme in LIS.

Details

Aslib Journal of Information Management, vol. 75 no. 3
Type: Research Article
ISSN: 2050-3806

Keywords

Open Access
Article
Publication date: 29 September 2022

Manju Priya Arthanarisamy Ramaswamy and Suja Palaniswamy

The aim of this study is to investigate subject independent emotion recognition capabilities of EEG and peripheral physiological signals namely: electroocoulogram (EOG)…

1039

Abstract

Purpose

The aim of this study is to investigate subject independent emotion recognition capabilities of EEG and peripheral physiological signals namely: electroocoulogram (EOG), electromyography (EMG), electrodermal activity (EDA), temperature, plethysmograph and respiration. The experiments are conducted on both modalities independently and in combination. This study arranges the physiological signals in order based on the prediction accuracy obtained on test data using time and frequency domain features.

Design/methodology/approach

DEAP dataset is used in this experiment. Time and frequency domain features of EEG and physiological signals are extracted, followed by correlation-based feature selection. Classifiers namely – Naïve Bayes, logistic regression, linear discriminant analysis, quadratic discriminant analysis, logit boost and stacking are trained on the selected features. Based on the performance of the classifiers on the test set, the best modality for each dimension of emotion is identified.

Findings

 The experimental results with EEG as one modality and all physiological signals as another modality indicate that EEG signals are better at arousal prediction compared to physiological signals by 7.18%, while physiological signals are better at valence prediction compared to EEG signals by 3.51%. The valence prediction accuracy of EOG is superior to zygomaticus electromyography (zEMG) and EDA by 1.75% at the cost of higher number of electrodes. This paper concludes that valence can be measured from the eyes (EOG) while arousal can be measured from the changes in blood volume (plethysmograph). The sorted order of physiological signals based on arousal prediction accuracy is plethysmograph, EOG (hEOG + vEOG), vEOG, hEOG, zEMG, tEMG, temperature, EMG (tEMG + zEMG), respiration, EDA, while based on valence prediction accuracy the sorted order is EOG (hEOG + vEOG), EDA, zEMG, hEOG, respiration, tEMG, vEOG, EMG (tEMG + zEMG), temperature and plethysmograph.

Originality/value

Many of the emotion recognition studies in literature are subject dependent and the limited subject independent emotion recognition studies in the literature report an average of leave one subject out (LOSO) validation result as accuracy. The work reported in this paper sets the baseline for subject independent emotion recognition using DEAP dataset by clearly specifying the subjects used in training and test set. In addition, this work specifies the cut-off score used to classify the scale as low or high in arousal and valence dimensions. Generally, statistical features are used for emotion recognition using physiological signals as a modality, whereas in this work, time and frequency domain features of physiological signals and EEG are used. This paper concludes that valence can be identified from EOG while arousal can be predicted from plethysmograph.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 11 June 2021

Xiaolong Zhou, Pinghao Wang, Sixian Chan, Kai Fang and Jianwen Fang

Visual object tracking plays a significant role in intelligent robot systems. This study aims to focus on unlocking the tracking performance potential of the deep network and…

Abstract

Purpose

Visual object tracking plays a significant role in intelligent robot systems. This study aims to focus on unlocking the tracking performance potential of the deep network and presenting a dynamic template update strategy for the Siamese trackers.

Design/methodology/approach

This paper presents a novel and efficient Siamese architecture for visual object tracking which introduces densely connected convolutional layers and a dynamic template update strategy into Siamese tracker.

Findings

The most advanced performance can be achieved by introducing densely connected convolutional neural networks that have not yet been applied to the tracking task into SiamRPN. By using the proposed architecture, the experimental results demonstrate that the performance of the proposed tracker is 5.8% (area under curve), 5.4% expected average overlap (EAO) and 3.5% (EAO) higher than the baseline on the OTB100, VOT2016 and VOT2018 data sets and achieves an excellent EAO score of 0.292 on the VOT2019 data set.

Originality/value

This study explores a deeper backbone network with each convolutional network layer densely connected. In response to tracking errors caused by templates that are not updated, this study proposes a dynamic template update strategy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 December 2023

Jinchao Huang

Single-shot multi-category clothing recognition and retrieval play a crucial role in online searching and offline settlement scenarios. Existing clothing recognition methods based…

Abstract

Purpose

Single-shot multi-category clothing recognition and retrieval play a crucial role in online searching and offline settlement scenarios. Existing clothing recognition methods based on RGBD clothing images often suffer from high-dimensional feature representations, leading to compromised performance and efficiency.

Design/methodology/approach

To address this issue, this paper proposes a novel method called Manifold Embedded Discriminative Feature Selection (MEDFS) to select global and local features, thereby reducing the dimensionality of the feature representation and improving performance. Specifically, by combining three global features and three local features, a low-dimensional embedding is constructed to capture the correlations between features and categories. The MEDFS method designs an optimization framework utilizing manifold mapping and sparse regularization to achieve feature selection. The optimization objective is solved using an alternating iterative strategy, ensuring convergence.

Findings

Empirical studies conducted on a publicly available RGBD clothing image dataset demonstrate that the proposed MEDFS method achieves highly competitive clothing classification performance while maintaining efficiency in clothing recognition and retrieval.

Originality/value

This paper introduces a novel approach for multi-category clothing recognition and retrieval, incorporating the selection of global and local features. The proposed method holds potential for practical applications in real-world clothing scenarios.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 16 April 2024

Rahadian Haryo Bayu Sejati, Dermawan Wibisono and Akbar Adhiutama

This paper aims to design a hybrid model of knowledge-based performance management system (KBPMS) for facilitating Lean Six-Sigma (L6s) application to increase contractor…

Abstract

Purpose

This paper aims to design a hybrid model of knowledge-based performance management system (KBPMS) for facilitating Lean Six-Sigma (L6s) application to increase contractor productivity without compromising human safety in Indonesian upstream oil field operations that manage ageing and life extension (ALE) facilities.

Design/methodology/approach

The research design applies a pragmatic paradigm by employing action research strategy with qualitative-quantitative methodology involving 385 of 1,533 workers. The KBPMS-L6s conceptual framework is developed and enriched with the Analytical Hierarchy Process (AHP) to prioritize fit-for-purpose Key Performance Indicators. The application of L6s with Human Performance Modes analysis is used to provide a statistical baseline approach for pre-assessment of the contractor’s organizational capabilities. A comprehensive literature review is given for the main pillars of the contextual framework.

Findings

The KBPMS-L6s concept has given an improved hierarchy for strategic and operational levels to achieve a performance benchmark to manage ALE facilities in Indonesian upstream oil field operations. To increase quality management practices in managing ALE facilities, the L6s application requires an assessment of the organizational capability of contractors and an analysis of Human Performance Modes (HPM) to identify levels of construction workers’ productivity based on human competency and safety awareness that have never been done in this field.

Research limitations/implications

The action research will only focus on the contractors’ productivity and safety performances that are managed by infrastructure maintenance programs for managing integrity of ALE facilities in Indonesian upstream of oil field operations. Future research could go toward validating this approach in other sectors.

Practical implications

This paper discusses the implications of developing the hybrid KBPMS- L6s enriched with AHP methodology and the application of HPM analysis to achieve a 14% reduction in inefficient working time, a 28% reduction in supervision costs, a 15% reduction in schedule completion delays, and a 78% reduction in safety incident rates of Total Recordable Incident Rate (TRIR), Days Away Restricted or Job Transfer (DART) and Motor Vehicle Crash (MVC), as evidence of achieving fit-for-purpose KPIs with safer, better, faster, and at lower costs.

Social implications

This paper does not discuss social implications

Originality/value

This paper successfully demonstrates a novel use of Knowledge-Based system with the integration AHP and HPM analysis to develop a hybrid KBPMS-L6s concept that successfully increases contractor productivity without compromising human safety performance while implementing ALE facility infrastructure maintenance program in upstream oil field operations.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

1 – 10 of 15