Search results

1 – 10 of over 1000
Article
Publication date: 30 October 2023

Xiangchun Li, Yuzhen Long, Chunli Yang, Yinqing Wang, Mingxiu Xing and Ying Jiang

Effective safety supervision plays a crucial role in ensuring safe production within coal mines. Conventional coal mine safety supervision (CMSS) in China has suffered from the…

Abstract

Purpose

Effective safety supervision plays a crucial role in ensuring safe production within coal mines. Conventional coal mine safety supervision (CMSS) in China has suffered from the problems of power-seeking, excessive resource consumption and poor timeliness. This paper aims to explore the Internet+ CMSS mode being emerged in China.

Design/methodology/approach

The evolution of CMSS systems underwent comprehensive scrutiny through a blend of qualitative and quantitative approaches. First, evolutionary game theory was used to analyze the necessity of incorporating Internet+ technology. Second, a system dynamics model of Internet+ CMSS was crafted, encompassing a system flow diagram and equations for various variables. The model was subsequently simulated by taking the W coal mine in Shanxi Province as a representative case study.

Findings

It was revealed that the expected safety profit from the Internet+ mode is 296.03% more than that from the conventional mode. The precise dissemination of law enforcement information was identified as a pivotal approach through which the Internet+ platform served as a conduit to foster synergistic collaboration among diverse elements within the system.

Practical implications

The outcomes of this study not only raise awareness about the potential of Internet+ technology in safety supervision but also establish a vital theoretical foundation for enhancing the efficacy of the Internet+ CMSS mode. The significance of these findings extends to fostering the wholesome and sustainable progress of the coal mining industry.

Originality/value

This research stands out as one of the limited studies that delve into the influence of Internet+ technology on CMSS. Building upon the pivotal approach identified, to the best of authors’ knowledge, a novel “multi-blind” working mechanism for Internet+ CMSS is introduced for the first time.

Details

International Journal of Energy Sector Management, vol. 18 no. 5
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 30 May 2024

Liang Wang, Shoukun Wang and Junzheng Wang

Mobile robots with independent wheel control face challenges in steering precision, motion stability and robustness across various wheel and steering system types. This paper aims…

Abstract

Purpose

Mobile robots with independent wheel control face challenges in steering precision, motion stability and robustness across various wheel and steering system types. This paper aims to propose a coordinated torque distribution control approach that compensates for tracking deviations using the longitudinal moment generated by active steering.

Design/methodology/approach

Building upon a two-degree-of-freedom robot model, an adaptive robust controller is used to compute the total longitudinal moment, while the robot actuator is regulated based on the difference between autonomous steering and the longitudinal moment. An adaptive robust control scheme is developed to achieve accurate and stable generation of the desired total moment value. Furthermore, quadratic programming is used for torque allocation, optimizing maneuverability and tracking precision by considering the robot’s dynamic model, tire load rate and maximum motor torque output.

Findings

Comparative evaluations with autonomous steering Ackermann speed control and the average torque method validate the superior performance of the proposed control strategy, demonstrating improved tracking accuracy and robot stability under diverse driving conditions.

Research limitations/implications

When designing adaptive algorithms, using models with higher degrees of freedom can enhance accuracy. Furthermore, incorporating additional objective functions in moment distribution can be explored to enhance adaptability, particularly in extreme environments.

Originality/value

By combining this method with the path-tracking algorithm, the robot’s structural path-tracking capabilities and ability to navigate a variety of difficult terrains can be optimized and improved.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 September 2024

Abdelhak Daiz, Rachid Hidki, Redouane Fares and Zouhair Charqui

The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.

Abstract

Purpose

The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.

Design/methodology/approach

Numerical simulations were used to analyze the convection patterns. The inner cylinder, made of a thermally conductive solid material, was heated through its inner surface, while the space between the cylinders was filled with air. The governing equations for velocity, pressure and temperature were solved using a Galerkin finite element method-based solver for partial differential equations.

Findings

The study explored various parameters affecting the dynamic and thermal structure of the flow, including the Rayleigh number (103 ≤ Ra ≤ 106), the number of corrugations of the inner cylinder (3 ≤ N ≤ 18), the thermal conductivity of the hollow cylinder (1 ≤ K ≤ 200) and the angle of inclination of the inner cylinder (0° ≤ φ ≤ 90°). Results indicated a notable sensitivity of flow intensity to changes in the Rayleigh number and the inner cylinder’s inclination angle φ. Particularly, for Ra = 106, the average heat transfer rate increased by 203% with a K ratio increment from 1 to 100 but decreased by 16.3% as the number of corrugations increased from 3 to 18.

Originality/value

This research contributes to understanding the complex interplay between geometry, thermal properties and flow dynamics in natural convection systems involving cylindrical geometries. The findings offer useful insights for improving the transfer of heat procedures in real-world situations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 May 2024

Jun Tian, Xungao Zhong, Xiafu Peng, Huosheng Hu and Qiang Liu

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between…

Abstract

Purpose

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between the image features and the robot moving. While some of the drawbacks associated with most visual servoing (VS) approaches include the vision–motor mapping computation and the robots’ dynamic performance, the problem of designing optimal and more effective VS systems still remains challenging. Thus, the purpose of this paper is to propose and evaluate the VS method for robots in an unstructured environment.

Design/methodology/approach

This paper presents a new model-free VS control of a robotic manipulator, for which an adaptive estimator aid by network learning is proposed using online estimation of the vision–motor mapping relationship in an environment without the knowledge of statistical noise. Based on the adaptive estimator, a model-free VS schema was constructed by introducing an active disturbance rejection control (ADRC). In our schema, the VS system was designed independently of the robot kinematic model.

Findings

The various simulations and experiments were conducted to verify the proposed approach by using an eye-in-hand robot manipulator without calibration and vision depth information, which can improve the autonomous maneuverability of the robot and also allow the robot to adapt its motion according to the image feature changes in real time. In the current method, the image feature trajectory was stable in the camera field range, and the robot’s end motion trajectory did not exhibit shock retreat. The results showed that the steady-state errors of image features was within 19.74 pixels, the robot positioning was stable within 1.53 mm and 0.0373 rad and the convergence rate of the control system was less than 7.21 s in real grasping tasks.

Originality/value

Compared with traditional Kalman filtering for image-based VS and position-based VS methods, this paper adopts the model-free VS method based on the adaptive mapping estimator combination with the ADRC controller, which is effective for improving the dynamic performance of robot systems. The proposed model-free VS schema is suitable for robots’ grasping manipulation in unstructured environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 July 2024

Bin Li, Shoukun Wang, Jinge Si, Yongkang Xu, Liang Wang, Chencheng Deng, Junzheng Wang and Zhi Liu

Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random…

Abstract

Purpose

Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random disturbances, proposing a dynamic target tracking framework for UGVs based on target state estimation, trajectory prediction, and UGV control.

Design/methodology/approach

To mitigate the adverse effects of noise contamination in target detection, the authors use the extended Kalman filter (EKF) to improve the accuracy of locating unmanned aerial vehicles (UAVs). Furthermore, a robust motion prediction algorithm based on polynomial fitting is developed to reduce the impact of trajectory jitter caused by crosswinds, enhancing the stability of drone trajectory prediction. Regarding UGV control, a dynamic vehicle model featuring independent front and rear wheel steering is derived. Additionally, a linear time-varying model predictive control algorithm is proposed to minimize tracking errors for the UGV.

Findings

To validate the feasibility of the framework, the algorithms were deployed on the designed UGV. Experimental results demonstrate the effectiveness of the proposed dynamic tracking algorithm of UGV under random disturbances.

Originality/value

This paper proposes a tracking framework of UGV based on target state estimation, trajectory prediction and UGV predictive control, enabling the system to achieve dynamic tracking to the UAV under multiple disturbance conditions.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 September 2024

Shanshuai Niu, Junzheng Wang and Jiangbo Zhao

There are various uncertain and nonlinear problems in hydraulic legged robot systems, including parameter uncertainty, unmodeled dynamics and external disturbances. This study…

Abstract

Purpose

There are various uncertain and nonlinear problems in hydraulic legged robot systems, including parameter uncertainty, unmodeled dynamics and external disturbances. This study aims to eliminate uncertainties and improve the foot trajectory tracking control performance of hydraulic legged robots, a high-performance foot trajectory tracking control method based on fixed-time disturbance observers for hydraulic legged robots is proposed.

Design/methodology/approach

First, the robot leg mechanical system model and hydraulic system model of the hydraulic legged robot are established. Subsequently, two fixed-time disturbance observers are designed to address the unmatched lumped uncertainty and match lumped uncertainty in the system. Finally, the lumped uncertainties are compensated in the controller design, and the designed motion controller also achieves fixed-time stability.

Findings

Through simulation and experiments, it can be found that the proposed tracking control method based on fixed-time observers has better tracking control performance. The effectiveness and superiority of the proposed method have been verified.

Originality/value

Both the disturbance observers and the controller achieve fixed-time stability, effectively improving the performance of foot trajectory tracking control for hydraulic legged robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 July 2024

U.S. Mahabaleshwar, S.M. Sachin, A.B. Vishalakshi, Gabriella Bognar and Bengt Ake Sunden

The purpose of this paper is to study the two-dimensional micropolar fluid flow with conjugate heat transfer and mass transpiration. The considered nanofluid has graphene…

Abstract

Purpose

The purpose of this paper is to study the two-dimensional micropolar fluid flow with conjugate heat transfer and mass transpiration. The considered nanofluid has graphene nanoparticles.

Design/methodology/approach

Governing nonlinear partial differential equations are converted to nonlinear ordinary differential equations by similarity transformation. Then, to analyze the flow, the authors derive the dual solutions to the flow problem. Biot number and radiation effect are included in the energy equation. The momentum equation was solved by using boundary conditions, and the temperature equation solved by using hypergeometric series solutions. Nusselt numbers and skin friction coefficients are calculated as functions of the Reynolds number. Further, the problem is governed by other parameters, namely, the magnetic parameter, radiation parameter, Prandtl number and mass transpiration. Graphene nanofluids have shown promising thermal conductivity enhancements due to the high thermal conductivity of graphene and have a wide range of applications affecting the thermal boundary layer and serve as coolants and thermal management systems in electronics or as heat transfer fluids in various industrial processes.

Findings

Results show that increasing the magnetic field decreases the momentum and increases thermal radiation. The heat source/sink parameter increases the thermal boundary layer. Increasing the volume fraction decreases the velocity profile and increases the temperature. Increasing the Eringen parameter increases the momentum of the fluid flow. Applications are found in the extrusion of polymer sheets, films and sheets, the manufacturing of plastic wires, the fabrication of fibers and the growth of crystals, among others. Heat sources/sinks are commonly used in electronic devices to transfer the heat generated by high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes to a fluid medium, thermal radiation on the fluid flow used in spectroscopy to study the properties of materials and also used in thermal imaging to capture and display the infrared radiation emitted by objects.

Originality/value

Micropolar fluid flow across stretching/shrinking surfaces is examined. Biot number and radiation effects are included in the energy equation. An increase in the volume fraction decreases the momentum boundary layer thickness. Nusselt numbers and skin friction coefficients are presented versus Reynolds numbers. A dual solution is obtained for a shrinking surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 September 2024

Xilin Xiong, Jingjing Yang, Tongqian Chen and Tong Niu

The purpose of this study is to provide a highly efficient method to obtain the kinetics of the hydrogen evolution reaction (HER) on metal electrodes in an alkaline solution and…

Abstract

Purpose

The purpose of this study is to provide a highly efficient method to obtain the kinetics of the hydrogen evolution reaction (HER) on metal electrodes in an alkaline solution and to analyze the effect of thiourea addition on HER under the same cathodic overpotential.

Design/methodology/approach

A novel method based on hydrogen permeation tests, potentiodynamic polarization tests and electrochemical impedance spectroscopy was put forward to characterize the HER kinetics on metal electrode.

Findings

The study found that adding thiourea accelerated the Volmer, Heyrovsky and Tafel reactions associated with HER. In addition, it reduced the hydrogen surface coverage and increased the hydrogen permeation steady-state current density. As a result, thiourea facilitated HER, promoted the diffusion of hydrogen atoms into iron and reduced the number of hydrogen atoms in the adsorbed state.

Originality/value

This work provides novel insights into the influence of thiourea on HER kinetics, demonstrating that thiourea addition can significantly enhance HER efficiency by altering reaction dynamics and promoting hydrogen atom diffusion into iron. This has implications for hydrogen energy applications, cathodic protection and understanding hydrogen embrittlement mechanisms.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 July 2024

Zhiyu Li, Hongguang Li, Yang Liu, Lingyun Jin and Congqing Wang

Autonomous flight of unmanned aerial vehicles (UAVs) in global position system (GPS)-denied environments has become an increasing research hotspot. This paper aims to realize the…

Abstract

Purpose

Autonomous flight of unmanned aerial vehicles (UAVs) in global position system (GPS)-denied environments has become an increasing research hotspot. This paper aims to realize the indoor fixed-point hovering control and autonomous flight for UAVs based on visual inertial simultaneous localization and mapping (SLAM) and sensor fusion algorithm based on extended Kalman filter.

Design/methodology/approach

The fundamental of the proposed method is using visual inertial SLAM to estimate the position information of the UAV and position-speed double-loop controller to control the UAV. The motion and observation models of the UAV and the fusion algorithm are given. Finally, experiments are performed to test the proposed algorithms.

Findings

A position-speed double-loop controller is proposed, by fusing the position information obtained by visual inertial SLAM with the data of airborne sensors. The experiment results of the indoor fixed-points hovering show that UAV flight control can be realized based on visual inertial SLAM in the absence of GPS.

Originality/value

A position-speed double-loop controller for UAV is designed and tested, which provides a more stable position estimation and enabled UAV to fly autonomously and hover in GPS-denied environment.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 26 December 2023

Hai Le and Phuong Nguyen

This study examines the importance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand. To this end, the authors construct a small open…

Abstract

Purpose

This study examines the importance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand. To this end, the authors construct a small open economy New Keynesian dynamic stochastic general equilibrium (DSGE) model. The model encompasses several essential characteristics, including incomplete financial markets, incomplete exchange rate pass-through, deviations from the law of one price and a banking sector. The authors consider generalized Taylor rules, in which policymakers adjust policy rates in response to output, inflation, credit growth and exchange rate fluctuations. The marginal likelihoods are then employed to investigate whether the central bank responds to fluctuations in the exchange rate and credit growth.

Design/methodology/approach

This study constructs a small open economy DSGE model and then estimates the model using Bayesian methods.

Findings

The authors demonstrate that the monetary authority does target exchange rates, whereas there is no evidence in favor of incorporating credit growth into the policy rules. These findings survive various robustness checks. Furthermore, the authors demonstrate that domestic shocks contribute significantly to domestic business cycles. Although the terms of trade shock plays a minor role in business cycles, it explains the most significant proportion of exchange rate fluctuations, followed by the country risk premium shock.

Originality/value

This study is the first attempt at exploring the relevance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand.

Details

Journal of Economic Studies, vol. 51 no. 6
Type: Research Article
ISSN: 0144-3585

Keywords

1 – 10 of over 1000