Search results

1 – 10 of 42
Article
Publication date: 26 March 2024

Anuj Kumar Goel and V.N.A. Naikan

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for…

Abstract

Purpose

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for various condition monitoring tasks. Rotating machinery (RM) serves a crucial role in diverse applications, necessitating accurate speed estimation essential for condition monitoring (CM) tasks such as vibration analysis, efficiency evaluation and predictive assessment.

Design/methodology/approach

This research explores the utilization of MEMS embedded in smartphones to economically estimate RM speed. A series of experiments were conducted across three test setups, comparing smartphone-based speed estimation to traditional methods. Rigorous testing spanned various dimensions, including scenarios of limited data availability, diverse speed applications and different smartphone placements on RM surfaces.

Findings

The methodology demonstrated exceptional performance across low and high-speed contexts. Smartphones-MEMS accurately estimated speed regardless of their placement on surfaces like metal and fiber, presenting promising outcomes with a mere 6 RPM maximum error. Statistical analysis, using a two-sample t-test, compared smartphone-derived speed outcomes with those from a tachometer and high-quality (HQ) data acquisition system.

Research limitations/implications

The research limitations include the need for further investigation into smartphone sensor calibration and accuracy in extremely high-speed scenarios. Future research could focus on refining these aspects.

Social implications

The societal impact is substantial, offering cost-effective CM across various industries and encouraging further exploration of MEMS-based vibration monitoring.

Originality/value

This research showcases an innovative approach using smartphone-embedded MEMS for RM speed estimation. The study’s multidimensional testing highlights its originality in addressing scenarios with limited data and varied speed applications.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 26 December 2023

Li Zhang and Xican Li

Aim to the limitations of grey relational analysis of interval grey number, based on the generalized greyness of interval grey number, this paper tries to construct a grey angle…

Abstract

Purpose

Aim to the limitations of grey relational analysis of interval grey number, based on the generalized greyness of interval grey number, this paper tries to construct a grey angle cosine relational degree model from the perspective of proximity and similarity.

Design/methodology/approach

Firstly, the algorithms of the generalized greyness of interval grey number and interval grey number vector are given, and its properties are analyzed. Then, based on the grey relational theory, the grey angle cosine relational model is proposed based on the generalized greyness of interval grey number, and the relationship between the classical cosine similarity model and the grey angle cosine relational model is analyzed. Finally, the validity of the model in this paper is illustrated by the calculation examples and an application example of related factor analysis of maize yield.

Findings

The results show that the grey angle cosine relational degree model has strict theoretical basis, convenient calculation and is easy to program, which can not only fully utilize the information of interval grey numbers but also overcome the shortcomings of greyness relational degree model. The grey angle cosine relational degree is an extended form of cosine similarity degree of real numbers. The calculation examples and the related factor analysis of maize yield show that the model proposed in this paper is feasible and valid.

Practical implications

The research results not only further enrich the grey system theory and method but also provide a basis for the grey relational analysis of the sequences in which the interval grey numbers coexist with the real numbers.

Originality/value

The paper succeeds in realizing the algorithms of the generalized greyness of interval grey number and interval grey number vector, and the grey angle cosine relational degree, which provide a new method for grey relational analysis.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 26 January 2024

Yuanzhang Yang, Linqin Wang, Shengxiang Gao, Zhengtao Yu and Ling Dong

This paper aims to disentangle Chinese-English-rich resources linguistic and speaker timbre features, achieving cross-lingual speaker transfer for Cambodian.

Abstract

Purpose

This paper aims to disentangle Chinese-English-rich resources linguistic and speaker timbre features, achieving cross-lingual speaker transfer for Cambodian.

Design/methodology/approach

This study introduces a novel approach: the construction of a cross-lingual feature disentangler coupled with the integration of time-frequency attention adaptive normalization to proficiently convert Cambodian speaker timbre into Chinese-English without altering the underlying Cambodian speech content.

Findings

Considering the limited availability of multi-speaker corpora in Cambodia, conventional methods have demonstrated subpar performance in Cambodian speaker voice transfer.

Originality/value

The originality of this study lies in the effectiveness of the disentanglement process and precise control over speaker timbre feature transfer.

Details

International Journal of Web Information Systems, vol. 20 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 3 April 2024

Ashish Bhatt and Shripad P. Mahulikar

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free…

Abstract

Purpose

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.

Design/methodology/approach

Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.

Findings

The potential plume core length and width increases as M increases. At higher altitudes, the potential core length increases for a fixed M. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.

Originality/value

The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 September 2023

Ahmed S. Baig, Muhammad Imran Chaudhry and R. Jared DeLisle

In this paper, the authors study the phenomenon of price clustering in the Pakistan Stock Exchange (PSX), a market viewed as one of the best-performing stock markets in the world…

Abstract

Purpose

In this paper, the authors study the phenomenon of price clustering in the Pakistan Stock Exchange (PSX), a market viewed as one of the best-performing stock markets in the world during 2014–2017. The authors study the effect of stock-level variables on price clustering and analyze the determinants of the cross-sectional patterns of price clustering in the PSX, in particular the causal link between price clustering and political instability.

Design/methodology/approach

The authors' dataset comprises daily observations on 100 PSX stocks spanning from January 1, 2009 to June 30, 2019. The authors use multivariate regression and spectral analysis to shed light on the dynamics of stock price clustering in PSX.

Findings

The authors document abnormally high levels of stock price clustering, particularly on integer increments, in PSX. The nature of stock price clustering in PSX is consistent with the negotiation hypothesis of Harris (1991). The levels of stock price clustering on PSX are persistent and contain a cyclical component. Furthermore, the authors find that political uncertainty in Pakistan is a significant contributor to the high levels of price clustering on PSX. The authors' conclusions are robust to alternative econometric specifications and different measures of price clustering and political uncertainty.

Practical implications

The authors' findings are of interest to investors and policymakers. Since price clustering decreases market quality and degrades the information content of stock prices, the authors' study shows that price efficiency in PSX has not improved despite major reforms over the last decade. One practical implication of the authors' results is that investors should be cautious while rebalancing portfolios around political events such as general elections because stock price clustering increases in the PSX during these periods. As a result, stock prices are likely to deviate from their intrinsic values.

Originality/value

Research on price clustering is limited to developed markets, and emerging/frontier markets have been largely overlooked. The phenomenon of price clustering in the PSX has yet to be studied, despite the relevance of the PSX for emerging/frontier market investors.

Details

Managerial Finance, vol. 50 no. 3
Type: Research Article
ISSN: 0307-4358

Keywords

Article
Publication date: 23 November 2023

Diego Gabriel Metz, Roberto Dalledone Machado, Marcos Arndt and Carlos Eduardo Rossigali

Realistic composite vehicles with 2, 3, 5 and 9 axles, consisting of a truck with one or two trailers, are addressed in this paper by computational models for vehicle–bridge…

Abstract

Purpose

Realistic composite vehicles with 2, 3, 5 and 9 axles, consisting of a truck with one or two trailers, are addressed in this paper by computational models for vehicle–bridge interaction analysis.

Design/methodology/approach

The vehicle–bridge interaction (VBI) models are formed by sets of 2-D rigid blocks interconnected by mass, damping and stiffness elements to simulate their suspension system. The passage of the vehicles is performed at different speeds. Several rolling surface profiles are admitted, considering the maintenance grade of the pavement. The spectral density functions are generated from an experimental database to form the longitudinal surface irregularity profiles. A computational code written in Phyton based on the finite element method was developed considering the Euler–Bernoulli beam model.

Findings

Several models of composite heavy vehicles are presented as manufactured and currently travel on major roads. Dynamic amplification factors are presented for each type of composite vehicle.

Research limitations/implications

The VBI models for compound heavy vehicles are 2-D.

Social implications

This work contributes to improving the safety and lifetime of the bridges, as well as the stability and comfort of the vehicles when passing over a bridge.

Originality/value

The structural response of the bridge is affected by the type and size of the compound vehicles, their speed and the conservative grade of the pavement. Moreover, one axle produces vibrations that can be superposed by the vibrations of the other axles. This effect can generate not usual dynamic responses.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 December 2023

Muhammad Arif Mahmood, Chioibasu Diana, Uzair Sajjad, Sabin Mihai, Ion Tiseanu and Andrei C. Popescu

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification…

Abstract

Purpose

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification. Currently, the porosity estimation is limited to powder bed fusion. The porosity estimation needs to be explored in the laser melting deposition (LMD) process, particularly analytical models that provide cost- and time-effective solutions compared to finite element analysis. For this purpose, this study aims to formulate two mathematical models for deposited layer dimensions and corresponding porosity in the LMD process.

Design/methodology/approach

In this study, analytical models have been proposed. Initially, deposited layer dimensions, including layer height, width and depth, were calculated based on the operating parameters. These outputs were introduced in the second model to estimate the part porosity. The models were validated with experimental data for Ti6Al4V depositions on Ti6Al4V substrate. A calibration curve (CC) was also developed for Ti6Al4V material and characterized using X-ray computed tomography. The models were also validated with the experimental results adopted from literature. The validated models were linked with the deep neural network (DNN) for its training and testing using a total of 6,703 computations with 1,500 iterations. Here, laser power, laser scanning speed and powder feeding rate were selected inputs, whereas porosity was set as an output.

Findings

The computations indicate that owing to the simultaneous inclusion of powder particulates, the powder elements use a substantial percentage of the laser beam energy for their melting, resulting in laser beam energy attenuation and reducing thermal value at the substrate. The primary operating parameters are directly correlated with the number of layers and total height in CC. Through X-ray computed tomography analyses, the number of layers showed a straightforward correlation with mean sphericity, while a converse relation was identified with the number, mean volume and mean diameter of pores. DNN and analytical models showed 2%–3% and 7%–9% mean absolute deviations, respectively, compared to the experimental results.

Originality/value

This research provides a unique solution for LMD porosity estimation by linking the developed analytical computational models with artificial neural networking. The presented framework predicts the porosity in the LMD-ed parts efficiently.

Article
Publication date: 14 March 2023

Bao Khac Quoc Nguyen, Nguyet Thi Bich Phan and Van Le

This study investigates the interactions between the US daily public debt and currency power under impacts of the Covid-19 crisis.

Abstract

Purpose

This study investigates the interactions between the US daily public debt and currency power under impacts of the Covid-19 crisis.

Design/methodology/approach

The authors employ the multivariate generalized autoregressive conditional heteroskedasticity (MGARCH) modeling to explore the interactions between daily changes in the US Debt to the Penny and the US Dollar Index. The data sets are from April 01, 1993, to May 27, 2022, in which noticeable points include the Covid-19 outbreak (January 01, 2020) and the US vaccination campaign commencement (December 14, 2020).

Findings

The authors find that the daily change in public debt positively affects the USD index return, and the past performance of currency power significantly mitigates the Debt to the Penny. Due to the Covid-19 outbreak, the impact of public debt on currency power becomes negative. This effect remains unchanged after the pandemic. These findings indicate that policy-makers could feasibly obtain both the budget stability and currency power objectives in pursuit of either public debt sustainability or power of currency. However, such policies should be considered that public debt could be a negative influencer during crisis periods.

Originality/value

The authors propose a pioneering approach to explore the relationship between leading and lagging indicators of an economy as characterized by their daily data sets. In accordance, empirical findings of this study inspire future research in relation to public debt and its connections with several economic indicators.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/IJSE-08-2022-0581

Details

International Journal of Social Economics, vol. 51 no. 2
Type: Research Article
ISSN: 0306-8293

Keywords

Article
Publication date: 18 January 2024

Kajal Vinayak and Shripad P. Mahulikar

In recent years, increased use of all-aspect infrared (IR)-guided missiles based on the long-wave infrared (LWIR; 8–12 µm) band has lowered the probability of aircraft survival in…

Abstract

Purpose

In recent years, increased use of all-aspect infrared (IR)-guided missiles based on the long-wave infrared (LWIR; 8–12 µm) band has lowered the probability of aircraft survival in warfare. The lock-on of these highly sensitive missiles is difficult to break, especially from the front. Aerodynamically heated swept-back leading edges (SBLE), because of their high temperature and large area, serve as a prominent LWIR source for aircraft detection from the front. This study aims to report the influence of sweep-back angle (Λ, based on the Mach number [M]) on aerodynamic heating and the LWIR signature of SBLE.

Design/methodology/approach

The temperature along SBLE is obtained numerically as radiation equilibrium temperature (Tw) by discretizing the SBLE length into “n” number of segments, and for each segment, emission based on Tw is evaluated. IR radiance due to reflected external sources (sky-shine and Earthshine) and radiance due to Tw are collectively used to determine the IR contrast between SBLE and its replaced background in the LWIR band (icont-SBLE,LWIR).

Findings

The results are obtained for low subsonic turboprop aircraft (Λ = 3°, M = 0.44); high subsonic strategic bombers (Λ = 35°, M = 0.8); fifth-generation stealth aircraft (Λ = 40°, M = 1.6); and aircraft with supercruise/supersonic capability (Λ = 50°, M = 2.5). The aircraft with supersonic capability (Λ = 50°, M = 2.5) reports the maximum LWIR signatures and hence the highest visibility from the front. The results obtained are compared with values at Λ = 0° for all cases, which shows that increasing Λ significantly reduces aerodynamic heating and LWIR signatures.

Originality/value

The novelty of this study comes from its report on the influence of Λ on the LWIR signatures of aircraft SBLE in the frontal aspect for the first time.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Last 3 months (42)

Content type

Article (42)
1 – 10 of 42