Search results

1 – 10 of over 18000
Article
Publication date: 28 June 2022

Jie Li, Jiyuan Wu, Chunlei Tu and Xingsong Wang

Automatic robots can improve the efficiency of liquefied petroleum gas (LPG) tank inspection and maintenance, but it is difficult to achieve high-precision spatial positioning and…

Abstract

Purpose

Automatic robots can improve the efficiency of liquefied petroleum gas (LPG) tank inspection and maintenance, but it is difficult to achieve high-precision spatial positioning and navigation on tank surfaces. The purpose of this paper is to develop a spatial positioning robotic system for tank inspection. The robot can accurately identify and track weld paths. The positioning system can complete robot’s spatial positioning on tank surfaces.

Design/methodology/approach

A tank inspection robot with curvature-adaptive transmission mechanisms is designed in this study. A weld path recognition method based on deep learning is proposed to accurately identify and extract weld paths. Integrated multiple sensors, the positioning system is developed to improve the robot’s spatial positioning accuracy. Experiments are conducted on a cylindrical tank to test weld seam tracking accuracy and spatial positioning performance of the robotic system. The practicality of the robotic system is then verified in field tests.

Findings

The robot can accurately identify and track weld seams with a maximum drift angle of 4° and a maximum offset distance of ±30 mm. The positioning system has excellent positioning accuracy and stability. The maximum angle and height errors are 3° and 0.08 m, respectively.

Originality/value

The positioning system can improve the autonomous performance of inspection robots and solve the problems of weld path recognition and spatial positioning. Application of the robotic system can promote the automatic inspection and maintenance of LPG tanks.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 May 2020

Jing Bai, Yuchang Zhang, Xiansheng Qin, Zhanxi Wang and Chen Zheng

The purpose of this paper is to present a visual detection approach to predict the poses of target objects placed in arbitrary positions before completing the corresponding tasks…

Abstract

Purpose

The purpose of this paper is to present a visual detection approach to predict the poses of target objects placed in arbitrary positions before completing the corresponding tasks in mobile robotic manufacturing systems.

Design/methodology/approach

A hybrid visual detection approach that combines monocular vision and laser ranging is proposed based on an eye-in-hand vision system. The laser displacement sensor is adopted to achieve normal alignment for an arbitrary plane and obtain depth information. The monocular camera measures the two-dimensional image information. In addition, a robot hand-eye relationship calibration method is presented in this paper.

Findings

First, a hybrid visual detection approach for mobile robotic manufacturing systems is proposed. This detection approach is based on an eye-in-hand vision system consisting of one monocular camera and three laser displacement sensors and it can achieve normal alignment for an arbitrary plane and spatial positioning of the workpiece. Second, based on this vision system, a robot hand-eye relationship calibration method is presented and it was successfully applied to a mobile robotic manufacturing system designed by the authors’ team. As a result, the relationship between the workpiece coordinate system and the end-effector coordinate system could be established accurately.

Practical implications

This approach can quickly and accurately establish the relationship between the coordinate system of the workpiece and that of the end-effector. The normal alignment accuracy of the hand-eye vision system was less than 0.5° and the spatial positioning accuracy could reach 0.5 mm.

Originality/value

This approach can achieve normal alignment for arbitrary planes and spatial positioning of the workpiece and it can quickly establish the pose relationship between the workpiece and end-effector coordinate systems. Moreover, the proposed approach can significantly improve the work efficiency, flexibility and intelligence of mobile robotic manufacturing systems.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 October 2014

Mohammed Abdullah Al Rashed and Tariq Pervez Sattar

The purpose of this paper is to develop a wireless positioning system. The automation of non-destructive testing (NDT) of large and complex geometry structures such as aircraft…

Abstract

Purpose

The purpose of this paper is to develop a wireless positioning system. The automation of non-destructive testing (NDT) of large and complex geometry structures such as aircraft wings and fuselage is prohibitively expensive, though automation promises to improve on manual ultrasound testing. One inexpensive way to achieve automation is by using a small wall-climbing mobile robot to move a single ultrasound probe over the surface through a scanning trajectory defined by a qualified procedure. However, the problem is to guide the robot though the trajectory and know whether it has followed it accurately to confirm that the qualified procedure has been carried out.

Design/methodology/approach

The approach is to use sophisticated bulk electronics developed for game playing in combination with MATLAB to develop a wireless positioning system.

Findings

The paper describes the development of an inexpensive wireless system comprising an optical spatial positioning system and inertial measurement unit that relates the 3D location of an NDT probe carried by a mobile robot to a computer-aided drawing (CAD) representation of the test structure in a MATLAB environment. The probe is located to an accuracy of ± 2 mm at distances of 5 m.

Research limitations/implications

Positioning range is limited to 5 m. Further development is required to increase this range.

Practical implications

The wireless system is used to develop tools to guide the robot remotely to follow a desired scanning trajectory, obtain feedback about the actual trajectory executed by the robot, know exactly where an ultrasound pulse echo was captured, map identified defects on the CAD and relate them to the real test object.

Originality/value

An inexpensive spatial positioning system with sufficient accuracy for automated NDT purposes.

Details

Industrial Robot: An International Journal, vol. 41 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 September 2022

Huanchao Wu

The digital media recording and broadcasting classroom using Internet real-time intelligent image positioning and opinion monitoring in communication teaching is researched and…

Abstract

Purpose

The digital media recording and broadcasting classroom using Internet real-time intelligent image positioning and opinion monitoring in communication teaching is researched and analyzed.

Design/methodology/approach

First, spatial grid positioning and monitoring and image intelligent recognition technologies were used to extract and analyze teaching images by mastering Internet of Things (IoT) technology and establishing an intelligent image positioning and opinion monitoring digital media recording and broadcasting system framework. Next, a positioning node algorithm was utilized to measure the image distance, and then a moving node location model under the IoT was established. In addition, a radial basis function (RBF) neural network was used to realize the signal transmission function. The experimental data of the adopted RBF based on the optimization of the adaptive cuckoo search (ACS-RBF) neural network, particle swarm algorithm neural network, and method of least squares optimization were compared and analyzed. In addition, a more efficient RBF neural network was adopted. Finally, the digital media recording and broadcasting classroom scheme of real-time intelligent image positioning and opinion monitoring was designed. In addition, the application environment of digital media actual teacher teaching was detected, and recording and broadcasting pictures were analyzed and researched.

Findings

The actual value, predicted value, and the number of predicted samples of the ACS-RBF model were all better than those of the two other neural networks. According to the analysis and comparison of the sampling optimization Monte Carlo localization (SOMCL), Monte Carlo, and genetic algorithm optimization-based Monte Carlo positioning algorithms, the SOMCL algorithm showed better robustness, and its positioning efficiency was superior to that of the two other algorithms. In addition, the SOMCL algorithm greatly reduced the positioning and monitoring energy consumption.

Originality/value

The application of real-time intelligent image positioning and monitoring technology in actual communication teaching was realized in the study.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 8 May 2019

Feiyan Guo, Fang Zou, Jian Hua Liu, Qingdong Xiao and Zhongqi Wang

Manufacturing errors, which will propagate along the assembly process, are inevitable and difficult to analyze for complex products, such as aircraft. To realize the goal of…

Abstract

Purpose

Manufacturing errors, which will propagate along the assembly process, are inevitable and difficult to analyze for complex products, such as aircraft. To realize the goal of precise assembly for an aircraft, with revealing the nonlinear transfer mechanism of assembly error, a set of analytical methods with response to the assembly error propagation process are developed. The purpose of this study is to solve the error problems by modeling and constructing the coordination dimension chain to control the consistency of accumulated assembly errors for different assemblies.

Design/methodology/approach

First, with the modeling of basic error sources, mutual interaction relationship of matting error and deformation error is analyzed, and influence matrix is formed. Second, by defining coordination datum transformation process, practical establishing error of assembly coordinate system is studied, and the position of assembly features is modified with actual relocation error considering datum changing. Third, considering the progressive assembly process, error propagation for a single assembly station and multi assembly stations is precisely modeled to gain coordination error chain for different assemblies, and the final coordination error is optimized by controlling the direction and value of accumulated error range.

Findings

Based on the proposed methodology, coordination error chain, which has a direct influence on the property of stealthy and reliability for modern aircrafts, is successfully constructed for the assembly work of the jointing between leading edge flap component and wing component at different assembly stations.

Originality/value

Precise assembly work at different assembly stations is completed to verify methodology’s feasibility. With analyzing the main comprised error items and some optimized solutions, benefit results for the practical engineering application showing that the maximum value of the practical flush of the profiles between the two components is only 0.681 mm, the minimum value is only 0.021 mm, and the average flush of the entire wing component is 0.358 mm, which are in accordance with theoretical calculation results and can successfully fit the assembly requirement. The potential user can be the engineers for manufacturing the complex products.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 September 2002

Derek W. Seward

The adaptation of conventional robots to construction sites is fraught with problems. Most significant of these are in relation to positioning, means of collision avoidance, and…

Abstract

The adaptation of conventional robots to construction sites is fraught with problems. Most significant of these are in relation to positioning, means of collision avoidance, and appropriate navigation strategy. This paper reviews the different levels of navigational autonomy that are possible and describes the system requirements for each. A taxonomy based on the concept of a Mobility Automation Level (MAL) is proposed. Each level is described and the requirements from a robot design perspective are discussed. Finally, a case study, based on an excavator with autonomously optimised movement, known as LUCIE, is used to illustrate some of the design criteria previously described and discussed.

Details

Construction Innovation, vol. 2 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 8 May 2024

Minghao Wang, Ming Cong, Yu Du, Huageng Zhong and Dong Liu

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no…

Abstract

Purpose

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no longer satisfied with enabling robots to build maps by remote control, more needs will focus on the autonomous exploration of unknown areas, which refer to the low light, complex spatial features and a series of unstructured environment, lick underground special space (dark and multiintersection). This study aims to propose a novel robot structure with mapping and autonomous exploration algorithms. The experiment proves the detection ability of the robot.

Design/methodology/approach

A small bio-inspired mobile robot suitable for underground special space (dark and multiintersection) is designed, and the control system is set up based on STM32 and Jetson Nano. The robot is equipped with double laser sensor and Ackerman chassis structure, which can adapt to the practical requirements of exploration in underground special space. Based on the graph optimization SLAM method, an optimization method for map construction is proposed. The Iterative Closest Point (ICP) algorithm is used to match two frames of laser to recalculate the relative pose of the robot, which improves the sensor utilization rate of the robot in underground space and also increase the synchronous positioning accuracy. Moreover, based on boundary cells and rapidly-exploring random tree (RRT) algorithm, a new Bio-RRT method for robot autonomous exploration is proposed in addition.

Findings

According to the experimental results, it can be seen that the upgraded SLAM method proposed in this paper achieves better results in map construction. At the same time, the algorithm presents good real-time performance as well as high accuracy and strong maintainability, particularly it can update the map continuously with the passing of time and ensure the positioning accuracy in the process of map updating. The Bio-RRT method fused with the firing excitation mechanism of boundary cells has a more purposeful random tree growth. The number of random tree expansion nodes is less, and the amount of information to be processed is reduced, which leads to the path planning time shorter and the efficiency higher. In addition, the target bias makes the random tree grow directly toward the target point with a certain probability, and the obtained path nodes are basically distributed on or on both sides of the line between the initial point and the target point, which makes the path length shorter and reduces the moving cost of the mobile robot. The final experimental results demonstrate that the proposed upgraded SLAM and Bio-RRT methods can better complete the underground special space exploration task.

Originality/value

Based on the background of robot autonomous exploration in underground special space, a new bio-inspired mobile robot structure with mapping and autonomous exploration algorithm is proposed in this paper. The robot structure is constructed, and the perceptual unit, control unit, driving unit and communication unit are described in detail. The robot can satisfy the practical requirements of exploring the underground dark and multiintersection space. Then, the upgraded graph optimization laser SLAM algorithm and interframe matching optimization method are proposed in this paper. The Bio-RRT independent exploration method is finally proposed, which takes shorter time in equally open space and the search strategy for multiintersection space is more efficient. The experimental results demonstrate that the proposed upgrade SLAM and Bio-RRT methods can better complete the underground space exploration task.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 17 July 2019

Zhihao Wang, Wenliang Chen, Min Wang, Qinghe Xu and Can Huang

The purpose of this study is to improve the position and posture accuracy of posture alignment mechanism. The automatic drilling and riveting machine is an important equipment for…

Abstract

Purpose

The purpose of this study is to improve the position and posture accuracy of posture alignment mechanism. The automatic drilling and riveting machine is an important equipment for aircraft assembly. The alignment accuracy of position and posture of the bracket type posture alignment mechanism has a great influence on the operation effect of the machine. Therefore, it is necessary to carry out the kinematic calibration.

Design/methodology/approach

Based on analysis of elastic deformation of the bracket and geometric errors of the posture alignment mechanism, an improved method of kinematic calibration was proposed. The position and posture errors of bracket caused by geometric errors were separated from those caused by gravity. The method of reduction of dimensions was applied to deal with the error coefficient matrix in error identification, and it did not change the coefficient of the error terms. The target position and its posture were corrected to improve the error compensation accuracy. Furthermore, numerical simulation and experimental verification were carried out.

Findings

The simulation and experimental results show that considering the influence of the elastic deformation of the bracket on the calibration effect, the error identification accuracy and compensation accuracy can be improved. The maximum value of position error is reduced from 5.33 mm to 1.60 × 10−1 mm and the maximum value of posture error is reduced from 1.07 × 10−3 rad to 6.02 × 10−4 rad, which is superior to the accuracy without considering the gravity factor.

Originality/value

This paper presents a calibration method considering the effects of geometric errors and gravity. By separating position and posture errors caused by different factors and correcting the target position and its posture, the results of the calibration method are greatly improved. The proposed method might be applied to any parallel mechanism based on the positioner.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 30 May 2022

Seela Aladuwaka, Barbara Wejnert, Ram Alagan and Manoj Mishra

The COVID-19 pandemic has impacted every community across the globe, but the global COVID-19 data show that the United States remains the most affected country where well over…

Abstract

The COVID-19 pandemic has impacted every community across the globe, but the global COVID-19 data show that the United States remains the most affected country where well over 666,000 people died, and approximately 40 million citizens became ill due to the virus' spread by mid-2021 (CDC, 2021). It is also noteworthy that extreme racial disparities in rates of COVID-19 cases and deaths are high in the United States, specifically among African American population. This situation is particularly evident among African American population in Alabama's Black Belt. Subsequently, COVID-19, racial disparities, and health inequalities have become central to the national and regional conversation. This chapter examines the associations between COVID-19, social determinants of health, and the systematic health disparity in African American population in Alabama's Black Belt region using Geographic Information Systems and the concept of uneven spatial development. Understanding the relationship between COVID-19 and these disparities within a spatial context vital to developing pathways to overcome the pandemic's effects and combat the systemic discrimination in this region. The derived policy recommendation could apply to other regions experiencing social inequality and health disparity.

Details

Systemic Inequality, Sustainability and COVID-19
Type: Book
ISBN: 978-1-80117-733-7

Keywords

Article
Publication date: 1 March 2001

F. Nisha de Silva

Computer‐aided decision‐support tools are part and parcel of the emergency planning and management process today. Much is dependent on using modern technology to gather and…

2130

Abstract

Computer‐aided decision‐support tools are part and parcel of the emergency planning and management process today. Much is dependent on using modern technology to gather and analyse data on damage assessment, meteorology, demography, etc. and provide decision support for prevention/mitigation, response and recovery. Diverse technologies are merged to provide useful functions to aid the emergency planner/manager. Complexities arise when attempting to link several streams of technology to achieve a realistic, usable and reliable decision‐support tool. This discussion identifies and analyses the challenging issues faced in linking two technologies: simulation modelling and GIS, to design spatial decision‐support systems for evacuation planing. Experiences in designing CEMPS, a prototype designed for area evacuation planning, are drawn on to discuss relevant managerial, behavioural, processual and technical issues. Focus is placed on modelling evacuee behaviour, generating realistic scenarios, validation, logistics, etc. while also investigating future trends and developments.

Details

Disaster Prevention and Management: An International Journal, vol. 10 no. 1
Type: Research Article
ISSN: 0965-3562

Keywords

1 – 10 of over 18000