Search results

1 – 10 of over 21000
Article
Publication date: 2 October 2017

Ioan Ursu, Daniela Enciu and Adrian Toader

The purpose of this paper is to report the results of a recent project of complex tests on the survival of structural health monitoring (SHM) technology with piezo wafer active…

Abstract

Purpose

The purpose of this paper is to report the results of a recent project of complex tests on the survival of structural health monitoring (SHM) technology with piezo wafer active sensors (PWAS) and electromechanical impedance spectroscopy (EMIS) at simulating the concomitant action of harsh conditions of outer space: extreme temperatures, radiations, vacuum.

Design/methodology/approach

The tests were conducted on PWAS, consists in adhesive and aluminium discs as structural specimens, with PWAS bonded on them. The substantiating of PWAS-EMIS-based SHM technique consists the fact that real part of the PWAS electromechanical impedance spectrum follows with fidelity the resonance behaviour of the structure vibrating under the PWAS excitation. This EMIS signature is very sensitive to any structural changes and, on this basis, can be monitored the onset and progress of structural damages such as fatigue, cracks, corrosion, etc.

Findings

The conclusion of the tests is that the cumulative impact of severe conditions of temperature, radiation and vacuum has not generated decommissioning of sensors or adhesive, which would have meant the compromise of the methodology. A second important outcome is linked to the capability of this methodology to distinguish between the damages of mechanical origin and the false ones, caused by environmental conditions, which are, basically, harmless.

Originality/value

The question of transfer of PWAS-EMIS-based SHM technology to space vehicles and applications received, as a novelty, a first and encouraging response.

Article
Publication date: 31 May 2011

S. Sethi and B.C. Ray

The purpose of this paper is to analyze microstructural integrity at the interface and consequent implicating effect on mechanical behavior of fiber‐reinforced polymer composites.

Abstract

Purpose

The purpose of this paper is to analyze microstructural integrity at the interface and consequent implicating effect on mechanical behavior of fiber‐reinforced polymer composites.

Design/methodology/approach

In the light of Fourier transform infrared spectroscope (FTIR imaging) and temperature‐modulated differential scanning calorimeter, a sorption mechanism was established. Thermal spike and thermal shock treatment was carried out at 150 and 80°C, respectively. This suggested that fiber/matrix adhesion rests on the structure and properties of both the fiber and matrix in the region near the interface during the hygrothermal treatment.

Findings

The carbon surface was found to selectively absorb the tertiary amine catalyst and to modify the chemical state of the cured resin apparently through the effects of absorbed water. The higher values of glass transition temperature (Tg) resulted in longer immersion time and higher exposure temperature. Together, these techniques provide a comprehensive picture of chemical and physical changes at the interphase region. Thermal spike of hybrid composite at 150°C temperature might possibly improve the adhesion level at the interface. Whereas, in case of thermal shock treatment at 80°C the fall in inter‐laminar shear strength value at higher number of cycles. This degradation of the interface region has been monitored by scanning electron microscope analysis.

Originality/value

The reported data are based on experimental investigation.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 September 2019

Gursel Serpen and Jayanta Debnath

The purpose of this paper is to present design and performance evaluation through simulation of a parking management system (PMS) for a fully automated, multi-story, puzzle-type…

Abstract

Purpose

The purpose of this paper is to present design and performance evaluation through simulation of a parking management system (PMS) for a fully automated, multi-story, puzzle-type and robotic parking structure with the overall objective of minimizing customer wait times while maximizing the space utilization.

Design/methodology/approach

The presentation entails development and integration of a complete suite of path planning, elevator scheduling and resource allocation algorithms. The PMS aims to manage multiple concurrent requests, in real time and in a dynamic context, for storage and retrieval of vehicles loaded onto robotic carts for a fully automated, multi-story and driving-free parking structure. The algorithm suite employs the incremental informed search algorithm D* Lite with domain-specific heuristics and the uninformed search algorithm Uniform Cost Search for path search and planning. An optimization methodology based on nested partitions and Genetic algorithm is adapted for scheduling of a group of elevators. The study considered a typical business day scenario in the center of a metropolis.

Findings

The simulation study indicates that the proposed design for the PMS is able to serve concurrent storage-retrieval requests representing a wide range of Poisson distributed customer arrival rates in real time while requiring reasonable computing resources under realistic scenarios. The customer waiting times for both storage and retrieval requests are within acceptable bounds, which are set as no more than 5 min, even in the presence of up to 100 concurrent storage and retrieval requests. The design is able to accommodate a variety of customer arrival rates and presence of immobilized vehicles which are assumed to be scattered across the floors of the structure to make it possible for deployment in real-time environments.

Originality/value

The intelligent system design is novel as the fully automated robotic parking structures are just in the process of being matured from a technology standpoint.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 11 December 2023

Jianbin Luo, Mingsen Li, Ke Mi, Zhida Liang, Xiaofeng Chen, Lei Ye, Yuanhao Tie, Song Xu, Haiguo Zhang, Guiguang Chen and Chunmei Jiang

The purpose of this paper is to study the aerodynamic characteristics of Ahmed body in longitudinal and lateral platoons under crosswind by computational fluid dynamics…

Abstract

Purpose

The purpose of this paper is to study the aerodynamic characteristics of Ahmed body in longitudinal and lateral platoons under crosswind by computational fluid dynamics simulation. It helps to improve the aerodynamic characteristics of vehicles by providing theoretical basis and engineering direction for the development and progress of intelligent transportation.

Design/methodology/approach

A two-car platoon model is used to compare with the experiment to prove the accuracy of the simulation method. The simplified Ahmed body model and the Reynolds Averaged N-S equation method are used to study the aerodynamic characteristics of vehicles at different distances under cross-winds.

Findings

When the longitudinal distance x/L = 0.25, the drag coefficients of the middle and trailing cars at β = 30° are improved by about 272% and 160% compared with β = 10°. The side force coefficients of the middle and trailing cars are increased by 50% and 62%. When the lateral distance y/W = 0.25, the side force coefficients of left and middle cars at β = 30° are reduced by 38% and 37.5% compared with β = 10°. However, the side force coefficient of the right car are increased by about 84.3%.

Originality/value

Most of the researches focus on the overtaking process, and there are few researches on the neat lateral platoon. The innovation of this paper is that in addition to studying the aerodynamic characteristics of longitudinal driving, the aerodynamic characteristics of neat lateral driving are also studied, and crosswind conditions are added. The authors hope to contribute to the development of intelligent transportation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2019

Nikolaos Kehayas

The purpose of this paper is to attempt an aerospaceplane design with the objective of Low-Earth-Orbit-and-Return-to-Earth (LEOARTE) under the constraints of safety, low cost…

Abstract

Purpose

The purpose of this paper is to attempt an aerospaceplane design with the objective of Low-Earth-Orbit-and-Return-to-Earth (LEOARTE) under the constraints of safety, low cost, reliability, low maintenance, aircraft-like operation and environmental compatibility. Along the same lines, a “sister” point-to-point flight on Earth Suborbital Aerospaceplane is proposed.

Design/methodology/approach

The LEOARTE aerospaceplane is based on a simple design, proven low risk technology, a small payload, an aerodynamic solution to re-entry heating, the high-speed phase of the outgoing flight taking place outside the atmosphere, a propulsion system comprising turbojet and rocket engines, an Air Collection and Enrichment System (ACES) and an appropriate mission profile.

Findings

It was found that a LEOARTE aerospaceplane design subject to the specified constraints with a cost as low as 950 United States Dollars (US$) per kilogram into Low Earth Orbit (LEO) might be feasible. As indicated by a case study, a LEOARTE aerospaceplane could lead, among other activities in space, to economically viable Space-Based Solar Power (SBSP). Its “sister” Suborbital aerospaceplane design could provide high-speed, point-to-point flights on the Earth.

Practical implications

The proposed LEOARTE aerospaceplane design renders space exploitation affordable and is much safer than ever before.

Originality/value

This paper provides an alternative approach to aerospaceplane design as a result of a new aerodynamically oriented Thermal Protection System (TPS) and a, perhaps, improved ACES. This approach might initiate widespread exploitation of space and offer a solution to the high-speed “air” transportation issue.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 May 1980

David Ray, John Gattorna and Mike Allen

Preface The functions of business divide into several areas and the general focus of this book is on one of the most important although least understood of these—DISTRIBUTION. The…

1461

Abstract

Preface The functions of business divide into several areas and the general focus of this book is on one of the most important although least understood of these—DISTRIBUTION. The particular focus is on reviewing current practice in distribution costing and on attempting to push the frontiers back a little by suggesting some new approaches to overcome previously defined shortcomings.

Details

International Journal of Physical Distribution & Materials Management, vol. 10 no. 5/6
Type: Research Article
ISSN: 0269-8218

Article
Publication date: 9 November 2023

Jianbin Luo, Yuanhao Tie, Ke Mi, Yajuan Pan, Lifei Tang, Yuan Li, Hongxiang Xu, Zhonghang Liu, Mingsen Li and Chunmei Jiang

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the…

Abstract

Purpose

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the response surface optimization method. This study has extraordinary implications for the planning of future intelligent transportation.

Design/methodology/approach

First, the single vehicle and vehicle platoon models are validated. Second, the configuration with the lowest average drag coefficient under the two conditions is obtained by response surface optimization. At the same time, the aerodynamic characteristics of the mixed platoon driving under different conditions are also analyzed.

Findings

The configuration with the lowest average drag coefficient under no crosswind conditions is 0.3 L for longitudinal spacing and 0.8 W for lateral spacing, with an average drag coefficient of 0.1931. The configuration with the lowest average drag coefficient under crosswind conditions is 10° for yaw angle, 0.25 L for longitudinal spacing, and 0.8 W for lateral spacing, with an average drag coefficient of 0.2251. Compared to the single vehicle, the average drag coefficients for the two conditions are reduced by 25.1% and 41.3%, respectively.

Originality/value

This paper investigates the lowest average drag coefficient for mixed platoon driving under no crosswind and crosswind conditions using a response surface optimization method. The computational fluid dynamics (CFD) results of single vehicle and vehicle platoon are compared and verified with the experimental results to ensure the reliability of this study. The research results provide theoretical reference and guidance for the planning of intelligent transportation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 November 2022

Mina Safizadeh, Mohammad Javad Maghsoodi Tilaki, Massoomeh Hedayati Marzbali and Aldrin Abdullah

The emerging concept of smart city is known to aim at sustainable urban development. One of the requirements for a smart city is to address accessibility inequalities. This study…

Abstract

Purpose

The emerging concept of smart city is known to aim at sustainable urban development. One of the requirements for a smart city is to address accessibility inequalities. This study aims to investigate the accessibility level issues in urban transformation before and after combining different street networks for Penang, Malaysia, as a case study to reveal greater insight and helpful information into mobility and accessibility inequalities for future smart city planning.

Design/methodology/approach

Using DepthmapX software, two main quantitative methodologies of space syntax, namely, spatial integration accessibility (SIA) and angular segment analysis by metric distance (ASDMA), are employed to analyse the level of accessibility for the main streets of George Town site before and after combination with contemporary networks. Integration, choice and entropy values were calculated for the study analysis.

Findings

Results revealed the implications of combining old irregular gridiron structures with the existing planned grid structures. George Town seems to have gained a higher capacity for pedestrian accessibility; however, vehicle accessibility has lost its capacity. Findings further suggest that a combination of irregular structure and grid structure is essential for urban growth in similar historical contexts to improve accessibility and address mobility inequalities.

Originality/value

The study concludes by highlighting the importance of the analysis of street structure transformation to predict consequences and promote the potential to reduce current inequalities in vehicle accessibility.

Details

Open House International, vol. 48 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 10 of over 21000