Search results

1 – 10 of 370
Article
Publication date: 11 August 2023

Siva Sankara Rao Yemineni, Mallikarjuna Rao Kutchibotla and Subba Rao V.V.

This paper aims to analyze deeply the effect of surface roughness conditions of the common interface of the two-layered riveted cantilever beams on their frictional damping during…

Abstract

Purpose

This paper aims to analyze deeply the effect of surface roughness conditions of the common interface of the two-layered riveted cantilever beams on their frictional damping during free lateral vibration at first mode. Here, the product, (µ × α), and damping ratio, ξ, are the parameters whose variations are analyzed in this investigation. For this, the influencing parameters considered are the natural frequency of vibration, f; the amplitude of initial excitation, y; and surface roughness value, Ra.

Design/methodology/approach

For experimentally evaluating logarithmic damping decrement, d, the frequency response function analyzer for the case of free lateral vibrations was used. Later, for evaluating the product, µ × α (where µ is the kinematic coefficient of friction and α is the dynamic slip ratio), and then, the damping ratio, ξ, the empirical relation suggested for logarithmic damping decrement, d, of riveted cantilever beams was used. After this, the full and reduced quadratic models of the product, µ × α, ξ, response surface methodology (RSM) with the help of Design Expert 11 software was used. Corresponding main effects plots, surface plots and prediction comparison plots were obtained to observe the variations of the product, µ × α, ξ for the variations of influencing parameters: f, y and Ra. Finally, a machine learning technique such as artificial neural networks (ANNs) using “nntool” present in MATLAB R13a software was used to predict the ξ for the different combinations of f, y and Ra.

Findings

The full and reduced quadratic regression models for the product, (µ × α) and the damping ratio, ξ of riveted cantilever beams for free lateral vibrations of the first mode in terms of the parameters: f, y and Ra were obtained. In addition, the main effects plots, surface plots and prediction comparison plots for the product, µ × α, ξ, with the corresponding experimental values of the product, µ × α, ξ, were obtained. Also, the execution of ANNs using MATLAB R13a software is proved to be the more accurate tool for the prediction of damping ratios in comparison to quadratic regression equations obtained from Design Expert 11 software. In the end, the assumption that the effect of surface roughness value on the product, (µ × α), and the damping ratio, ξ, is negligible is proved to be true using the main effects plots for the product, (µ × α) and ξ obtained from the Design Expert 11 software.

Originality/value

Obtaining the full and reduced quadratic regression equations for the product, (µ × α), and ξ of the two-layered riveted cantilever beams in terms of parameters: f, y and Ra was done. In addition, the conditions for the corresponding minimum and maximum values of the product, (µ × α), and ξ were obtained. Later, the main effects plots, surface plots and comparison plots of the predicted product, (µ × α), and ξ versus experimental product, (µ × α), and ξ were also obtained. Finally, the predicted values of the product, (µ × α), and ξ using the ANNs tool are observed to be the more accurate values in comparison to that obtained from RSM using the Design Expert 11 software.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 19 March 2024

Chun Tian, Gengwei Zhai, Mengling Wu, Jiajun Zhou and Yaojie Li

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the…

Abstract

Purpose

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.

Design/methodology/approach

Based on the PLS-160 wheel-rail adhesion simulation test rig, the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip. Through statistical analysis of multiple sets of experimental data, the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained, and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed. The study analyzes the utilization of traction/braking adhesion, as well as adhesion redundancy, for different medium under small creepage and large slip conditions. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived.

Findings

When the third-body medium exists on the rail surface, the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance. Compared with the current adhesion control strategy of small creepage, adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization, thereby ensuring the traction/braking performance and operation safety of the train.

Originality/value

Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions, without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train. Therefore, there is a risk of traction overspeeding/braking skidding. This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.

Article
Publication date: 13 February 2024

Jiajun Zhou, Chao Chen, Chun Tian, Gengwei Zhai and Hao Yu

To authenticate the existence and principles of the adhesion recovery phenomenon under water pollution conditions, an innovative circumferential rail–wheel adhesion test rig was…

Abstract

Purpose

To authenticate the existence and principles of the adhesion recovery phenomenon under water pollution conditions, an innovative circumferential rail–wheel adhesion test rig was used. The study conducted extensive tests on the adhesion characteristics under large sliding conditions.

Design/methodology/approach

Experiments were conducted to investigate the influence of speed, axle load and slip on adhesion recovery. Based on the experimental results, the adhesion recovery transition function was re-fitted.

Findings

The study reveals that the adhesion recovery phenomenon truly exists under water conditions. The adhesion coefficient shows an increasing trend with the growth of the slip ratio. Moreover, at the current speed and axle load levels, the adhesion recovery is directly proportional to the square of the slip ratio and inversely proportional to the axle load.

Originality/value

The phenomenon of adhesion recovery and the formulated equations in this study can serve as an experimental and theoretical foundation for the design of braking and anti-skid control algorithms for trains.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0379/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 23 June 2023

Ferdinand Schmid, Constantin Paschold, Thomas Lohner and Karsten Stahl

Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a…

Abstract

Purpose

Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a profound knowledge of the local gear mesh is essential. The tooth contact of internal gears relates to a convex and concave surface that form a conformal contact. This is in contrast to external gears, where two convex surfaces form a contraformal contact. This paper aims at a better understanding of conformal contacts under elastohydrodynamic lubrication (EHL) to improve the design of internal gearings.

Design/methodology/approach

An existing numerical EHL model is used for studying the characteristic properties of a hard conformal EHL line contact. A hard contraformal EHL line contact is studied as reference. Non-Newtonian fluid behavior and thermal effects are considered. By taking into account the local contact conformity and kinematics, the effects and relevance of the curvature of the lubricant gap and micro-slip are analyzed. In a parameter study, scale effects of the contact radii on film thickness, temperature rise and friction are examined.

Findings

The curvature of the lubricant gap and effects of micro-slip are small in hard conformal EHL line contacts. For high micro-slip, it can be neglected. Hence, the modeling of conformal contacts using an equivalent geometry of the contact problem is reasonable. The parameter study shows beneficial tribological aspects of the conformal contact compared to the contraformal contact. Higher film thickness and lower fluid coefficient of friction are observed for conformal contacts, which can be attributed to lower pressures for the case of the same external normal force, or to a higher contact temperature rise for the case of equivalent contact pressure.

Originality/value

Despite its widespread existence, the local geometry and kinematics in hard conformal EHL line contacts like in internal gearings have been rarely studied. The findings help for a better understanding of local contact characteristics and its relevance. The quantified scale effects help to improve the efficiency and load-carrying capacity of machine elements with hard conformal EHL contacts, like internal gearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0366/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 November 2023

A.K. Abdul Hakeem, Priya S., Ganga Bhose and Sivasankaran Sivanandam

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent…

Abstract

Purpose

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent years have witnessed significant progress in optimizing these fluids for enhanced heat transfer within porous (Darcy–Forchheimer) structures, offering promising solutions for various industries seeking improved thermalmanagement and energy efficiency.

Design/methodology/approach

The first step is to transform the original partial differential equations into a system of first-order ordinary differential equations (ODEs). The fourth-order Runge–Kutta method is chosen for its accuracy in solving ODEs. The present study investigates the free convective boundary layer flow of hybrid nanofluids over a moving thin inclined needle with the slip flow brought about by inclined Lorentz force and Darcy–Forchheimer porous matrix, viscous dissipation.

Findings

It is found that slip conditions (velocity and Thermal) exist for a range of the natural convection boundary layer flow. In the hybrid nanofluid flow, which consists of Al2O3 and Fe3O4 are nanoparticles, H2OC2H6O2 (50:50) are considered as the base fluid. The consequence of the governing parameter on the momentum and temperature profile distribution is graphically depicted. The range of the variables is 1 ≤ M ≤ 4, 1 ≤ d ≤ 2.5, 1 ≤ δ ≤ 4, 1 ≤ Fr ≤ 7, 1 ≤ Kr ≤ 7 and 0.5≤λ ≤ 3.5. The Nusselt number and skin friction factors are used to calculate the numerical values of various parameters, which are displayed in Table 4. These analyses elucidate that upsurges in the value of the Fr noticeably diminish the momentum and temperature. It is investigated to see if the contemporary results are in outstanding promise with the outcomes reported in earlier works.

Practical implications

The results can be very helpful to improve the energy efficiency of thermal systems.

Social implications

The hybrid nanofluids in heat transfer have the potential to improve the energy efficiency and performance of a wide range of systems.

Originality/value

This study proposes that in the combined effects of hybrid nanofluid properties, the inclined Lorentz force, the Darcy–Forchheimer model for porous media and viscous dissipation on the boundary layer flow of a conducting fluid over a moving thin inclined needle. Assessing the potential practical applications of the hybrid nanofluids in inclined needles, this could involve areas such as biomedical engineering, drug delivery systems or microfluidic devices. In future should explore the benefits and limitations of using hybrid nanofluids in these applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 July 2023

Pengfei Cheng

To further understand the granular flow lubrication mechanism in metal contact pairs, the effect of sliding-rolling ratio on the force chain properties was investigated.

Abstract

Purpose

To further understand the granular flow lubrication mechanism in metal contact pairs, the effect of sliding-rolling ratio on the force chain properties was investigated.

Design/methodology/approach

The parallel inter-plate model of the granular flow lubrication was established with discrete element method. Then, the correlation law between sliding-rolling ratio and force chain evolution properties was calculated and analyzed with PFC2D software platform.

Findings

Numerical calculation results show that the dynamic fluctuation property of force chain is existed, and the shock frequency of it is increased with the increase of sliding-rolling ratio. The same evolution law is also occurred for the bearing rate of strong force chain in the initial expansion and final compression phases, and the opposite phenomena is obtained for the overall expansion phase. Moreover, the directivity of strong force chain is changed by the sliding-rolling ratio. With the increase of sliding-rolling ratio, the directivity of strong force chain is first tended to y-axis, and then inclined to the x-axis in the whole phases. The basic reason is that a clamping up and downward movement impact for the neighbor particles are the essence of the above phenomenon.

Originality/value

The main contribution of this work is to lay a theory foundation of interfacial lubrication mechanism with granular flow.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0133/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 March 2024

Devender, Paras Ram and Kushal Sharma

The present article aims to investigate the squeeze effects on hematite suspension-based curved annular plates with Rosensweig’s viscosity and Kozeny–Carman’s porous structure…

Abstract

Purpose

The present article aims to investigate the squeeze effects on hematite suspension-based curved annular plates with Rosensweig’s viscosity and Kozeny–Carman’s porous structure under the variable strong magnetic field and slip in the Shliomis model. The variable magnetic field is utilised to retain all magnetic elements within the model. The aforementioned mechanism would have the benefit of generating a maximal field at the system’s required active contact zone.

Design/methodology/approach

The Kozeny–Carman globular sphere model is used for porous facing. Rosensweig’s extension of Einstein’s viscosity is taken into consideration to enhance the fluid’s viscosity, and Beavers and Joseph’s slip boundary conditions are employed to assess the slip effect.

Findings

The pressure and lifting force under squeezing are computed through modification of the Reynolds equation with the addition of Kozeny–Carman’s model-based porosity, Rosensweig’s viscosity, slip and varying magnetic field. The obtained results for the lifting force are very encouraging and have been compared with Einstein’s viscosity-based model.

Originality/value

Researchers so far have carried out problems on lubrication of various sliders considering Einstein’s viscosity only, whereas in our problem, Rosensweig’s viscosity has been taken along with Kozeny–Carman’s porous structure model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 May 2022

Vinoth Kumar K., Loganathan T.G. and Jagadeesh G.

The Purpose of this study is to prove the possibility of developing low cost mechanical anti – lock braking system (ABS) for the passenger’s safety.

Abstract

Purpose

The Purpose of this study is to prove the possibility of developing low cost mechanical anti – lock braking system (ABS) for the passenger’s safety.

Design/methodology/approach

The design methodology of the proposed newer mechanical ABS comprises of two units, namely, the braking unit and wheel lock prevention unit. The braking unit actuates the wheel stopping as and when the driver applies the brake, whereas the wheel lock prevention unit initiates wheel release to prevent locking and subsequent slip/skidding. The brake pedal with master cylinder assembly and double-arm cylinder forms the braking unit, brake pad cylinder, movable brake pad, solenoid valve and dynamo forms the wheel lock prevention unit. The dynamo coupled with the rotor energises/de-energises the solenoid values to direct airflow for applying brake and release it, which makes the system less energy-dependent.

Findings

The braking unit aids in vehicle stops, by locking the disc with the brake pad actuated by a double-arm cylinder. The dynamo energises the solenoid valve to activate the brake pad cylinder piston for applying the brake on the disc. Instantaneously, on applying the brake the dynamo de-energises the solenoid to divert the pneumatic flow for retracting the brake pad thereby minimizing the braking torque. The baking torque reduction revives the wheel rotating and prevents slip/skidding.

Originality/value

Mechanical ABS preventing wheel lock by torque reduction principle is a novel method that has not been evolved so far. The system was designed with repair/replacement of the parts and subcomponents to support higher affordability on safety grounds.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 October 2023

Zhizhong Guo, Fei Liu, Yuze Shang, Zhe Li and Ping Qin

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance…

Abstract

Purpose

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance the longitudinal and lateral tracking accuracy of the vehicle.

Design/methodology/approach

In addressing the challenges posed by time-varying road information and vehicle dynamics parameters, a combination of model predictive control (MPC) and active disturbance rejection control (ADRC) is employed in this study. A coupled controller based on the authors’ model was developed by utilizing the capabilities of MPC and ADRC. Emphasis is placed on the ramifications of road undulations and changes in curvature concerning control effectiveness. Recognizing these factors as disturbances, measures are taken to offset their influences within the system. Load transfer due to variations in road parameters has been considered and integrated into the design of the authors’ synergistic architecture.

Findings

The framework's efficacy is validated through hardware-in-the-loop simulation. Experimental results show that the integrated controller is more robust than conventional MPC and PID controllers. Consequently, the integrated controller improves the vehicle's driving stability and safety.

Originality/value

The proposed coupled control strategy notably enhances vehicle stability and reduces slip concerns. A tailored model is introduced integrating a control strategy based on MPC and ADRC which takes into account vertical and longitudinal force variations and allowing it to effectively cope with complex scenarios and multifaceted constraints problems.

Article
Publication date: 12 April 2024

Jun Zhao, Hao Zhang, Junwei Liu, Yanfen Gong, Songqiang Wan, Long Liu, Jiacheng Li, Ziyi Song, Shiyao Zhang and Qingrui Li

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation…

Abstract

Purpose

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation problem in tall buildings more effectively and study its mechanical properties more deeply.

Design/methodology/approach

The properties of reinforced concrete coupled shear wall (RCCSW) and reinforced ECC coupled shear wall (RECSW) have been studied by numerical simulation, which is in good agreement with the experimental results. The reliability of the finite element model is verified. On this basis, a detailed parameter study is carried out, including the strength and reinforcement ratio of longitudinal rebar, the placement height of ECC in the wall limb and the position of ECC connecting beams. The study indexes include failure mode and the skeleton curve.

Findings

The results suggest that the bearing capacity of RECSW is significantly affected by the ratio of longitudinal rebar. When the ratio of longitudinal rebar increases from 0.47% to 3.35%, the bearing capacity of RECSW increases from 250 kN to 303 kN, an increase of 21%. The strength of longitudinal rebar has little influence on the bearing capacity of RECSW. When the strength of the longitudinal rebar increases, the bearing capacity of RECSW increases little. The failure mode of RECSW can be improved by lowering the casting height of the ECC beam in a certain range.

Originality/value

In this paper, ECC is used to strengthen the coupled shear wall, and the accuracy of the finite element model is verified from the failure mode and skeleton curve. On this basis, the casting height of the ECC casting wall limb, the strength and reinforcement ratio of longitudinal rebar and the position of the ECC beam are studied in detail.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 370