Search results

1 – 10 of 12
Article
Publication date: 5 January 2023

Sivaselvan S., Natarajan M., Devadasan S.R. and Sivaram N.M.

Aluminum alloys are applicable in marine and aero fields. Alloys AA5083 and AA6061 are aluminum alloys with different chemical and physical properties. Combination of two…

Abstract

Purpose

Aluminum alloys are applicable in marine and aero fields. Alloys AA5083 and AA6061 are aluminum alloys with different chemical and physical properties. Combination of two dissimilar materials could result in enhanced strength. Generally, dissimilar aluminum alloy joint is made by friction stir welding (FSW) to achieve improved physical properties compared with the parent alloys. The purpose of this research is to develop a new FSW dissimilar material with enhanced properties using AA5083 and AA6061 alloys.

Design/methodology/approach

In this research, FSW joint was made for butt joint configuration using AA5083 and AA6061 aluminum alloys. Cylindrical pin with threaded profile was used to perform the joint. The tool tilting angle was maintained as constant, and the tool rotational speed and the welding speed were varied. Wear performance and mechanical strength of the joint were analyzed.

Findings

The results revealed that the increase of tool rotational speed led to poor wear performance, whereas increase of welding speed showed a better wear performance. Further, the prepared joint was analyzed for different wear parameters such as sliding velocity and applied load. The results displayed that the increase of sliding velocity exhibited low wear rate and the increase of load showed high wear rate.

Originality/value

This work is original and deals with the wear performance of AA5083–AA6061 joint at different tool rotational and welding speeds.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 July 2020

Nicolas Pinoteau, Duc Toan Pham, Hong Hai Nguyen and Romain Mège

This study aims to evaluate the feasibility of a hybrid fire testing by real-time subdivision of physical and numerical substructures (NSs) on simplified structures as a milestone…

Abstract

Purpose

This study aims to evaluate the feasibility of a hybrid fire testing by real-time subdivision of physical and numerical substructures (NSs) on simplified structures as a milestone in the development of the method.

Design/methodology/approach

An interface where the data was exchanged between a finite element software and a hydraulic jack regulator using text files has been developed and applied to perform two experimental campaigns of nine tests on simple steel frame structures with different thermal loading conditions. In the first experimental campaign, the physical substructure (PS) was assumedly protected by insulating material, while the NS was uniformly exposed to ISO 834 fire on all sides. The difference of the second experimental campaign from the first one was that the PS was heated on one side.

Findings

The experimental results showed how a gap between the determined equilibrium position and the “real” position caused by the time lag, as well as an overshoot phenomenon due to the non-synchronized action of both substructures, may occur. From the identification of the overshoot, two paths of development spring to mind to reduce the delay of the NS.

Originality/value

In the context that the number of proposal theoretical algorithms continues to increase with the absence of real experimental adjustments, such experimental results and the associated analysis constitute additional understandings to identify possible paths of improvements that might have been missed or could not be accessed through previous studies.

Details

Journal of Structural Fire Engineering, vol. 11 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 August 2019

Payam Asadi and Hosein Sourani

In the absence of random variables, random variables are generated by the Monte Carlo (MC) simulation method. There are some methods for generating fragility curves with fewer…

Abstract

Purpose

In the absence of random variables, random variables are generated by the Monte Carlo (MC) simulation method. There are some methods for generating fragility curves with fewer nonlinear analyses. However, the accuracy of these methods is not suitable for all performance levels and peak ground acceleration (PGA) range. This paper aims to present a method through the seismic improvement of the high-dimensional model representation method for generating fragility curves while taking advantage of fewer analyses by choosing the right border points.

Design/methodology/approach

In this method, the values of uncertain variables are selected based on the results of the initial analyses, the damage limit of each performance level or according to acceptable limits in the design code. In particular, PGAs are selected based on the general shape of the fragility curve for each performance limit. Also, polynomial response functions are estimated for each accelerogram. To evaluate the accuracy, fragility curves are estimated by different methods for a single degree of freedom system and a reinforced concrete frame.

Findings

The results indicated that the proposed method can not only reduce the computational cost but also has a higher accuracy than the other methods, compared with the MC baseline method.

Originality/value

The proposed response functions are more consistent with the actual values and are also congruent with each performance level to increase the accuracy of the fragility curves.

Article
Publication date: 13 July 2021

Zhi Li, Song Cen and Chenfeng Li

The purpose of this paper is to extend a recent unsymmetric 8-node, 24-DOF hexahedral solid element US-ATFH8 with high distortion tolerance, which uses the analytical solutions of…

Abstract

Purpose

The purpose of this paper is to extend a recent unsymmetric 8-node, 24-DOF hexahedral solid element US-ATFH8 with high distortion tolerance, which uses the analytical solutions of linear elasticity governing equations as the trial functions (analytical trial function) to geometrically nonlinear analysis.

Design/methodology/approach

Based on the assumption that these analytical trial functions can still properly work in each increment step during the nonlinear analysis, the present work concentrates on the construction of incremental nonlinear formulations of the unsymmetric element US-ATFH8 through two different ways: the general updated Lagrangian (UL) approach and the incremental co-rotational (CR) approach. The key innovation is how to update the stresses containing the linear analytical trial functions.

Findings

Several numerical examples for 3D structures show that both resulting nonlinear elements, US-ATFH8-UL and US-ATFH8-CR, perform very well, no matter whether regular or distorted coarse mesh is used, and exhibit much better performances than those conventional symmetric nonlinear solid elements.

Originality/value

The success of the extension of element US-ATFH8 to geometrically nonlinear analysis again shows the merits of the unsymmetric finite element method with analytical trial functions, although these functions are the analytical solutions of linear elasticity governing equations.

Article
Publication date: 8 May 2018

Dongdong He, Qiang Gao and Wanxie Zhong

The purpose of this paper is to propose an accurate and efficient numerical method for determining the dynamic responses of a tensegrity structure consisting of bars, which can…

Abstract

Purpose

The purpose of this paper is to propose an accurate and efficient numerical method for determining the dynamic responses of a tensegrity structure consisting of bars, which can work under both compression and tension, and cables, which cannot work under compression.

Design/methodology/approach

An accurate time-domain solution is obtained by using the precise integration method when there is no cable slackening or tightening, and the Newton–Raphson scheme is used to determine the time at which the cables tighten or slacken.

Findings

Responses of a tensegrity structure under harmonic excitations are given to demonstrate the efficiency and accuracy of the proposed method. The validation shows that the proposed method has higher accuracy and computational efficiency than the Runge–Kutta method. Because the cables of the tensegrity structure might be tense or slack, its dynamic behaviors will exhibit stable periodicity, multi-periodicity, quasi-periodicity and chaos under different amplitudes and frequencies of excitation.

Originality/value

The steady state response of a tensegrity structure can be obtained efficiently and accurately by the proposed method. Based on bifurcation theory, the Poincaré section and phase space trajectory, multi-periodic vibration, quasi-periodic vibration and chaotic vibration of the tensegrity structures are predicted accurately.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2019

Ramla Karim Qureshi, Negar Elhami-Khorasani and Thomas Gernay

This paper aims to investigate the need for active boundary conditions during fire testing of structural elements, review existing studies on hybrid fire testing (HFT), a…

Abstract

Purpose

This paper aims to investigate the need for active boundary conditions during fire testing of structural elements, review existing studies on hybrid fire testing (HFT), a technique that would ensure updating of boundary conditions during a fire test, and propose a compensation scheme to mitigate instabilities in the hybrid testing procedure.

Design/methodology/approach

The paper focuses on structural steel columns and starts with a detailed literature review of steel column fire tests in the past few decades with varying axial and rotational end restraints. The review is followed with new results from comparative numerical analyses of structural steel columns with various end constraints. HFT is then discussed as a potential solution to be adapted for fire testing of structural elements. Challenges in contemporary HFT procedures are discussed, and application of stiffness updating approaches is demonstrated.

Findings

The reviewed studies indicate that axial and rotational restraints at the boundaries considerably influence the fire response of steel columns. Equivalent static spring technique for simulating effect of surrounding frame on an isolated column behavior does not depict accurate buckling and post-buckling response. Additionally, numerical models that simulate fire performance of a column situated in a full-frame do follow the trends observed in actual test results up until failure occurs, but these simulations do not necessarily capture post-failure performance accurately. HFT can be used to capture proper boundary conditions during testing of isolated elements, as well as correct failure modes. However, existing studies showed cases with instabilities during HFT. This paper demonstrates that a different stiffness updates calculated from the force-displacement response history of test specimen at elevated temperature can be used to resolve stability issues.

Originality/value

The paper has two contributions: it suggests that the provision of active boundary conditions is needed in structural fire testing, as equivalent static spring does not necessarily capture the effect of surrounding frame on an isolated element during a fire test, and it shows that force-displacement response history of test specimen during HFT can be used in the form of a stiffness update to ensure test stability.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 January 2018

Ana Sauca, Thomas Gernay, Fabienne Robert, Nicola Tondini and Jean-Marc Franssen

The purpose of this paper is to propose a method for hybrid fire testing (HFT) which is unconditionally stable, ensures equilibrium and compatibility at the interface and captures…

Abstract

Purpose

The purpose of this paper is to propose a method for hybrid fire testing (HFT) which is unconditionally stable, ensures equilibrium and compatibility at the interface and captures the global behavior of the analyzed structure. HFT is a technique that allows assessing experimentally the fire performance of a structural element under real boundary conditions that capture the effect of the surrounding structure.

Design/methodology/approach

The paper starts with the analysis of the method used in the few previous HFT. Based on the analytical study of a simple one degree-of-freedom elastic system, it is shown that this previous method is fundamentally unstable in certain configurations that cannot be easily predicted in advance. Therefore, a new method is introduced to overcome the stability problem. The method is applied in a virtual hybrid test on a 2D reinforced concrete beam part of a moment-resisting frame.

Findings

It is shown through analytical developments and applicative examples that the stability of the method used in previous HFT depends on the stiffness ratio between the two substructures. The method is unstable when implemented in force control on a physical substructure that is less stiff than the surrounding structure. Conversely, the method is unstable when implemented in displacement control on a physical substructure stiffer than the remainder. In multi-degrees-of-freedom tests where the temperature will affect the stiffness of the elements, it is generally not possible to ensure continuous stability throughout the test using this former method. Therefore, a new method is proposed where the stability is not dependent on the stiffness ratio between the two substructures. Application of the new method in a virtual HFT proved to be stable, to ensure compatibility and equilibrium at the interface and to reproduce accurately the global structural behavior.

Originality/value

The paper provides a method to perform hybrid fire tests which overcomes the stability problem lying in the former method. The efficiency of the new method is demonstrated in a virtual HFT with three degrees-of-freedom at the interface, the next step being its implementation in a real (laboratory) hybrid test.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 March 2016

Liang Zhang, Qiang Gao, Yin Liu and Hongwu Zhang

The purpose of this paper is to propose an efficient finite element formulation for nonlinear analysis of clustered tensegrity that consists of classical cables, clustered cables…

Abstract

Purpose

The purpose of this paper is to propose an efficient finite element formulation for nonlinear analysis of clustered tensegrity that consists of classical cables, clustered cables and bars.

Design/methodology/approach

The derivation of the finite element formulation is based on the co-rotational approach, which decomposes a geometrically nonlinear deformation into a large rigid body motion and a small-strain deformation. A tangent stiffness matrix of a clustered cable is proposed and the Newton-Raphson scheme is employed to solve the nonlinear equation.

Findings

The derived tangent stiffness matrix, including an additional stiffness terms that describes the slide effect of pulleys, can regress to the stiffness matrix of a classical cable, which is convenient for the implementation of finite element procedure. Two typical numerical examples show that the proposed formulation is accurate and requires less iteration than the force density method.

Originality/value

The co-rotational formulation of a clustered cable is originally proposed, although some mature methods, such as the TL, Force Density and Dynamic Relaxation method, have been applied to nonlinear analysis of clustered tensegrity. The proposed co-rotational formulation proved efficient.

Details

Engineering Computations, vol. 33 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 October 2022

Rogério Lopes, Francisco Barros, Francisco Q. de Melo, Nuno V. Ramos, Rafael Cunha, Ricardo Maia, Rui Rodrigues, M.P.L. Parente and P.M.G. Moreira

The vehicle´s body front pillar should absorb most of the striker kinetic energy, while only a fraction of that is absorbed by the door structure. This study aims to discuss the…

Abstract

Purpose

The vehicle´s body front pillar should absorb most of the striker kinetic energy, while only a fraction of that is absorbed by the door structure. This study aims to discuss the aforementioned issue. In this test the striker is a virtual entity. Six uniaxial strain gauges are installed throughout the door. Additionally, contactless 3D digital image correlation (DIC) allows to assess the major door panel’s continuous deformation and strain fields.

Design/methodology/approach

A coach is a large and heavy long-distance passenger transport vehicle. Their structural certification, classifies coaches as M3 Class III vehicles. New coach structures’ designs need analyses of each sub-system for critical pre-validation of the entire structure, aiming driver and passenger carrier safety. Also, a thorough examination due to increased travel speed is needed.

Findings

Experimental pseudo-dynamic (PSD) results were compared and validated using finite element method (FEM) with two pieces of distinct FEM software (Abaqus® and PamCrash®). The time dependent solution was carried out by explicit techniques. Results by FEM and PSD test showed good agreement, evidencing the reliability of the tools selected. Results by PamCrash® were closer to the experimental data.

Practical implications

R-29 is truck-only regulation, however can be adapted to coaches in case of a frontal collision. The present work focuses on the impact behavior of the passenger front door subsystem.

Originality/value

As a first validation the entire structure, the behavior of a vehicle door, under in-plane impacts was studied. The corresponding deformation energy absorbed by the frontal passenger coach door under virtual impacts of a swinging striker was assessed using a PSD approach.

Details

International Journal of Structural Integrity, vol. 14 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 February 2020

Gao Lin, Wen-Bin Ye, Zhi-Yuan Li and Jun Liu

The purpose of this paper is to present an accurate and efficient element for analysis of spherical shell structures.

Abstract

Purpose

The purpose of this paper is to present an accurate and efficient element for analysis of spherical shell structures.

Design/methodology/approach

A scaled boundary finite element method is proposed, which offers more advantages than the finite element method and boundary element method. Only the boundary of the computational domain needs to be discretized, but no fundamental solution is required.

Findings

The method applies to thin as well as thick spherical shells, irrespective of the shell geometry, boundary conditions and applied loading. The numerical solution converges to highly accurate result with raising the order of high-order elements.

Originality/value

The modeling strictly follows three-dimensional theory of elasticity. Formulation of the surface finite elements using three translational degree of freedoms per node is required, which results in considerably simplifying the computation. In the thickness directions, it is solved analytically, no problem of high aspect ratio arises and transverse shear locking can be successfully avoided.

Details

Engineering Computations, vol. 37 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 12