To read this content please select one of the options below:

Development of hybrid fire testing by real-time subdivision of physical and numerical substructures

Nicolas Pinoteau (Université Paris-Est, Centre Scientifique et Technique du Bâtiment (CSTB), Marne-la-Vallée Cedex 2, France)
Duc Toan Pham (Université Paris-Est, Centre Scientifique et Technique du Bâtiment (CSTB), Marne-la-Vallée Cedex 2, France)
Hong Hai Nguyen (Université Paris-Est, Centre Scientifique et Technique du Bâtiment (CSTB), Marne-la-Vallée Cedex 2, France)
Romain Mège (Université Paris-Est, Centre Scientifique et Technique du Bâtiment (CSTB), Marne-la-Vallée Cedex 2, France)

Journal of Structural Fire Engineering

ISSN: 2040-2317

Article publication date: 10 July 2020

Issue publication date: 10 October 2020

101

Abstract

Purpose

This study aims to evaluate the feasibility of a hybrid fire testing by real-time subdivision of physical and numerical substructures (NSs) on simplified structures as a milestone in the development of the method.

Design/methodology/approach

An interface where the data was exchanged between a finite element software and a hydraulic jack regulator using text files has been developed and applied to perform two experimental campaigns of nine tests on simple steel frame structures with different thermal loading conditions. In the first experimental campaign, the physical substructure (PS) was assumedly protected by insulating material, while the NS was uniformly exposed to ISO 834 fire on all sides. The difference of the second experimental campaign from the first one was that the PS was heated on one side.

Findings

The experimental results showed how a gap between the determined equilibrium position and the “real” position caused by the time lag, as well as an overshoot phenomenon due to the non-synchronized action of both substructures, may occur. From the identification of the overshoot, two paths of development spring to mind to reduce the delay of the NS.

Originality/value

In the context that the number of proposal theoretical algorithms continues to increase with the absence of real experimental adjustments, such experimental results and the associated analysis constitute additional understandings to identify possible paths of improvements that might have been missed or could not be accessed through previous studies.

Keywords

Acknowledgements

Authors wish to thank the technical team at CSTB, France: Pierre-Jean Degiovanni, Eric Degiovanni, Fabrice Maurice, Stéphane Charuel, Jean-Francois Moller and Miguel Cruz for preparing and performing the experimental study. Additionally, much gratitude is expressed towards Dr. Dhionis Dhima for guiding the initial development steps and providing fruitful insight on the research orientations.

Citation

Pinoteau, N., Pham, D.T., Nguyen, H.H. and Mège, R. (2020), "Development of hybrid fire testing by real-time subdivision of physical and numerical substructures", Journal of Structural Fire Engineering, Vol. 11 No. 4, pp. 481-497. https://doi.org/10.1108/JSFE-07-2019-0026

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles