Search results

1 – 10 of over 1000
Article
Publication date: 27 May 2024

Li Li and Xican Li

In order to solve the decision-making problem that the attributive weight and attributive value are both interval grey numbers, this paper tries to construct a multi-attribute…

Abstract

Purpose

In order to solve the decision-making problem that the attributive weight and attributive value are both interval grey numbers, this paper tries to construct a multi-attribute grey decision-making model based on generalized greyness of interval grey number.

Design/methodology/approach

Firstly, according to the nature of the generalized gresness of interval grey number, the generalized weighted greyness distance between interval grey numbers is given, and the transformation relationship between greyness distance and real number distance is analyzed. Then according to the objective function that the square sum of generalized weighted greyness distances from the decision scheme to the best scheme and the worst scheme is the minimum, a multi-attribute grey decision-making model is constructed, and the simplified form of the model is given. Finally, the grey decision-making model proposed in this paper is applied to the evaluation of technological innovation capability of 6 provinces in China to verify the effectiveness of the model.

Findings

The results show that the grey decision-making model proposed in this paper has a strict mathematical foundation, clear physical meaning, simple calculation and easy programming. The application example shows that the grey decision model in this paper is feasible and effective. The research results not only enrich the grey system theory, but also provide a new way for the decision-making problem that the attributive weights and attributive values are interval grey numbers.

Practical implications

The decision-making model proposed in this paper does not need to seek the optimal solution of the attributive weight and the attributive value, and can save the decision-making labor and capital investment. The model in this paper is also suitable for the decision-making problem that deals with the coexistence of interval grey numbers and real numbers.

Originality/value

The paper succeeds in realizing the multi-attribute grey decision-making model based on generalized gresness and its simplified forms, which provide a new method for grey decision analysis.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 3 October 2023

Mario Daniele

When financial statements are public, the choice between alternative reporting regimes constitutes a signal that addresses external stakeholders. Generally, the choice of more…

Abstract

Purpose

When financial statements are public, the choice between alternative reporting regimes constitutes a signal that addresses external stakeholders. Generally, the choice of more complex regimes acts as a complement of firms' transparency. However, in the absence of audits, opportunistic behaviors could be incentivized. This study aims to test whether SMEs' choice between alternative accounting regimes is associated with earnings quality.

Design/methodology/approach

Drawing on the literature about accounting choices and earnings quality, this study investigates whether the same conclusions are confirmed for SMEs. Using a sample of 4,054 Italian companies and 12,114 observations, it compared four earnings quality proxies of a group of companies that opted for the “Full” rules and those of a subsample of the population of companies that applied the Simplified rules.

Findings

The results suggest that the signaling power of accounting rules' choice could lead to wrong conclusions for SMEs. Indeed, a positive relationship emerged (H1) between the choice of the “Full” rules and income smoothing behaviors, while the same choice appears to reduce the probability to disclose SPOS. Moreover, the results suggest that opportunistic behaviors are more frequent for firms that have settled in a “non-cooperative” social environment (H2).

Research limitations/implications

This study could foster research on financial reporting quality in private firms.

Practical implications

Comparing the quality of financial statements drawn up according to two alternative accounting regimes could provide useful suggestions for both users and regulators.

Originality/value

The results contribute to the limited literature on the implications of differential reporting. Finally, it enriches the literature about heterogeneity in accounting quality within private firms.

Details

Journal of Applied Accounting Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0967-5426

Keywords

Article
Publication date: 28 August 2024

Jingxuan Chai, Jie Mei, Youmin Gong, Weiren Wu, Guangfu Ma and Guoming Zhao

Asteroids have the characteristics of noncooperative, irregular gravity and complex terrain on the surface, which cause difficulties in successful landing for conventional…

Abstract

Purpose

Asteroids have the characteristics of noncooperative, irregular gravity and complex terrain on the surface, which cause difficulties in successful landing for conventional landers. The purpose of this paper is to study the trajectory tracking problem of a multi-node flexible lander with unknown flexible coefficient and space disturbance.

Design/methodology/approach

To facilitate the stability analysis, this paper constructs a simplified dynamic model of the multi-node flexible lander. By introducing the nonlinear transformation, a concurrent learning-based adaptive trajectory tracking guidance law is designed to ensure tracking performance, which uses both real-time information and historical data to estimate the parameters without persistent excitation (PE) conditions. A data selection algorithm is developed to enhance the richness of historical data, which can improve the convergence rate of the parameter estimation and the guidance performance.

Findings

Finally, Lyapunov stability theory is used to prove that the unknown parameters can converge to their actual value and, meanwhile, the closed-loop system is stable. The effectiveness of the proposed algorithm is further verified through simulations.

Originality/value

This paper provides a new design idea for future asteroid landers, and a trajectory tracking controller based on concurrent learning and preset performance is first proposed.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 November 2023

Bhanu Prakash Saripalli, Gagan Singh and Sonika Singh

Estimation of solar cell parameters, mathematical modeling and the actual performance analysis of photovoltaic (PV) cells at various ecological conditions are very important in…

Abstract

Purpose

Estimation of solar cell parameters, mathematical modeling and the actual performance analysis of photovoltaic (PV) cells at various ecological conditions are very important in the design and analysis of maximum power point trackers and power converters. This study aims to propose the analysis and modeling of a simplified three-diode model based on the manufacturer’s performance data.

Design/methodology/approach

A novel technique is presented to evaluate the PV cell constraints and simplify the existing equation using analytical and iterative methods. To examine the current equation, this study focuses on three crucial operational points: open circuit, short circuit and maximum operating points. The number of parameters needed to estimate these built-in models is decreased from nine to five by an effective iteration method, considerably reducing computational requirements.

Findings

The proposed model, in contrast to the previous complex nine-parameter three-diode model, simplifies the modeling and analysis process by requiring only five parameters. To ensure the reliability and accuracy of this proposed model, its results were carefully compared with datasheet values under standard test conditions (STC). This model was implemented using MATLAB/Simulink and validated using a polycrystalline solar cell under STC conditions.

Originality/value

The proposed three-diode model clearly outperforms the earlier existing two-diode model in terms of accuracy and performance, especially in lower irradiance settings, according to the results and comparison analysis.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 October 2023

Jiahua Jin, Qin Chen and Xiangbin Yan

Given the popularity of online health communities (OHCs) and medical question-and-answer (Q&A) services, it is increasingly important to understand what constitutes useful answers…

Abstract

Purpose

Given the popularity of online health communities (OHCs) and medical question-and-answer (Q&A) services, it is increasingly important to understand what constitutes useful answers and user-adopted standards in healthcare domain. However, few studies provide insights into how health information characteristics, provider characteristics and recipient characteristics jointly influence user information adoption decisions. To fill this research gap, this study examines the combined effects of physicians' certainty tone as information characteristics, seniority as provider characteristics and disease severity as recipient characteristics on patients' health information adoption.

Design/methodology/approach

Drawing on dual-process theory and information adoption model, an extended information adoption model is established in this study to examine the effect of attitude certainty on patients' health information adoption, and the moderating effects of online seniority and offline seniority, as well as patient motivation level—disease severity. Utilizing logit regression models, the authors empirically tested the hypotheses based on 4,224 Q&A records from a popular Chinese OHC.

Findings

The results show that (1) attitude certainty has a significant positive impact on patients' health information adoption, (2) the relationship between attitude certainty and information adoption is negatively moderated by physicians' online seniority, but is positively moderated by offline seniority; (3) there is a negative three-way interaction effect of attitude certainty, online seniority and disease severity on patients' health information adoption.

Originality/value

This study extends the information adoption model to examine the two-way interaction between argument quality and source reliability, as well as the three-way interaction with user motivation level, especially for health information adoption in the healthcare field. These findings also provide direct practical applications for knowledge contributors and OHCs.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 14 July 2023

Bowen Zheng, Mudasir Hussain, Yang Yang, Albert P.C. Chan and Hung-Lin Chi

In the last decades, various building information modeling–life cycle assessment (BIM-LCA) integration approaches have been developed to assess the environmental impact of the…

Abstract

Purpose

In the last decades, various building information modeling–life cycle assessment (BIM-LCA) integration approaches have been developed to assess the environmental impact of the built asset. However, there is a lack of consensus on the optimal BIM-LCA integration approach that provides the most accurate and efficient assessment outcomes. To compare and determine their accuracy and efficiency, this study aimed to investigate four typical BIM-LCA integration solutions, namely, conventional, parametric modeling, plug-in and industry foundation classes (IFC)-based integration.

Design/methodology/approach

The four integration approaches were developed and applied using the same building project. A quantitative technique for evaluating the accuracy and efficiency of BIM-LCA integration solutions was used. Four indicators for assessing the performance of BIM-LCA integration were (1) validity of LCA results, (2) accuracy of bill-of-quantity (BOQ) extraction, (3) time for developing life cycle inventories (i.e. developing time) and (4) time for calculating LCA results (i.e. calculation time).

Findings

The results show that the plug-in-based approach outperforms others in developing and calculation time, while the conventional one could derive the most accuracy in BOQ extraction and result validity. The parametric modeling approach outperforms the IFC-based method regarding BOQ extraction, developing time and calculation time. Despite this, the IFC-based approach produces LCA outcomes with approximately 1% error, proving its validity.

Originality/value

This paper forms one of the first studies that employ a quantitative and objective method to determine the performance of four typical BIM-LCA integration solutions and reveal the trade-offs between the accuracy and efficiency of the integration approaches. The findings provide practical references for LCA practitioners to select appropriate BIM-LCA integration approaches for evaluating the environmental impact of the built asset during the design phase.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 February 2024

Wenqi Mao, Kexin Ran, Ting-Kwei Wang, Anyuan Yu, Hongyue Lv and Jieh-Haur Chen

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for…

Abstract

Purpose

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for transportation cost optimization. Traditional irregular component loading methods are based on past performance, which frequently wastes vehicle space. Additionally, real-time road conditions, precast component assembly times, and delivery vehicle waiting times due to equipment constraints at the construction site affect transportation time and overall transportation costs. Therefore, this paper aims to provide an optimization model for Just-In-Time (JIT) delivery of precast components considering 3D loading constraints, real-time road conditions and assembly time.

Design/methodology/approach

In order to propose a JIT (just-in-time) delivery optimization model, the effects of the sizes of irregular precast components, the assembly time, and the loading methods are considered in the 3D loading constraint model. In addition, for JIT delivery, incorporating real-time road conditions in the transportation process is essential to mitigate delays in the delivery of precast components. The 3D precast component loading problem is solved by using a hybrid genetic algorithm which mixes the genetic algorithm and the simulated annealing algorithm.

Findings

A real case study was used to validate the JIT delivery optimization model. The results indicated this study contributes to the optimization of strategies for loading irregular precast components and the reduction of transportation costs by 5.38%.

Originality/value

This study establishes a JIT delivery optimization model with the aim of reducing transportation costs by considering 3D loading constraints, real-time road conditions and assembly time. The irregular precast component is simplified into 3D bounding box and loaded with three-space division heuristic packing algorithm. In addition, the hybrid algorithm mixing the genetic algorithm and the simulated annealing algorithm is to solve the 3D container loading problem, which provides both global search capability and the ability to perform local searching. The JIT delivery optimization model can provide decision-makers with a more comprehensive and economical strategy for loading and transporting irregular precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 July 2024

Hasan Fevzi Cugen, Semra Arslan Selcuk and Yusuf Arayici

Building Information Modelling in building processes brings significant efficiency gains. However, its use in restoration projects is still experimental. On the other hand, more…

Abstract

Purpose

Building Information Modelling in building processes brings significant efficiency gains. However, its use in restoration projects is still experimental. On the other hand, more than traditional methods are needed for communication, collaboration, and shared understanding. Hence, the main research question is how to enhance these aspects in multinational projects with information transparency challenges and the need for shared understanding among stakeholders. This research aims to develop and propose a hybrid modelling approach that integrates traditional and BIM-based information process workflows through testing and evaluating to what extent BIM can be used in restoration projects without excessive efforts.

Design/methodology/approach

Considering this aim, the case study, the Mahmud Pasha Hammam as the heritage building, a 15th-century structure located in Serbia, was studied with the action research strategy to enable action-based learning by doing. Alongside the 2D documentation as the traditional method for the existing structure, restoration design proposals were also produced for the new additions to the heritage structure with BIM.

Findings

A new BIM use scenario was experimented with and proposed, proving BIM implementation's potential impact on heritage restoration projects. A hybrid model was developed that meets the requirements of existing regulations and specifications, where restoration proposals were visualized quickly, quantity take-off was produced, and technical drawings were generated instantly.

Originality/value

This hybrid modelling workflow integrates HBIM with traditional methods in restoration projects to improve communication, efficiency, and collaboration in a real-time professional project.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

1 – 10 of over 1000