Search results

1 – 10 of over 22000
Article
Publication date: 1 July 2006

Robert Bogue

To give a background to the automotive sensor industry and consider recent developments in sensors used in vehicle safety systems.

1382

Abstract

Purpose

To give a background to the automotive sensor industry and consider recent developments in sensors used in vehicle safety systems.

Design/methodology/approach

This paper describes the early development of the automotive sensor industry and gives examples of present‐day applications. It subsequently discusses development in advanced vehicle safety systems.

Findings

The advent of cost‐effective electronics in 1970 led to the development of numerous automotive systems such as electronic engine management which use a diversity of sensors. Since, the 1990s, safety has emerged as a major consideration and features such as traction control, ABS, stability control systems and air bags have been applied across a wide sector of the industry. New active safety systems which respond to passenger weight and position, as well as collision avoidance systems which can sense the vehicle's external environment are being developed and applied widely. These are fuelling the automotive sensor market which is forecast to reach 2.24 billion units per annum by 2010.Safety system integration is a major theme of present developments.

Originality/value

This paper shows that customer demands for enhanced safety have driven the development and rapid adoption of advanced vehicle safety systems. This has boosted the markets for automotive sensors.

Details

Sensor Review, vol. 26 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 September 1995

E.T. Powner and F. Yalcinkaya

Outlines the current research work on intelligent sensors andintelligent transducers which will be required in complex systems. Discussesthe elements of an intelligent sensor and…

514

Abstract

Outlines the current research work on intelligent sensors and intelligent transducers which will be required in complex systems. Discusses the elements of an intelligent sensor and concludes that these require analogue filtering, data conversion and compensation, and a digital communication link to a common signal bus. Explains what is meant by a systems approach to intelligent sensors with layered information processing. Concludes that unless a deeper understanding of the basics of sensor systems is acquired new intelligent sensor design will be very difficult.

Details

Sensor Review, vol. 15 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 October 2011

David Sanders, Ian Stott, Jasper Graham‐Jones, Alexander Gegov and Giles Tewkesbury

The purpose of this paper is to investigate how to make powered‐wheelchair driving easier using simple expert systems to interpret joystick and ultrasonic sensor data. The expert…

Abstract

Purpose

The purpose of this paper is to investigate how to make powered‐wheelchair driving easier using simple expert systems to interpret joystick and ultrasonic sensor data. The expert systems interpret shaky joystick movement and identify potentially hazardous situations and then recommend safe courses of action.

Design/methodology/approach

The way that a human user interacts with a powered‐wheelchair is investigated. Some simple expert systems are presented that interpret hand tremor and provide joystick position signals for an ultrasonic sensor system. Results are presented from a series of timed tasks completed by users using a joystick to control a powered‐wheelchair. Effect on the efficiency of driving a powered‐wheelchair is measured using the times to drive through progressively more complicated courses. Drivers completed tests both with and without sensors and the most recently published systems are used to compare results.

Findings

The new expert systems consistently out‐performed the most recently published systems. A minor secondary result was that in simple environments, wheelchair drivers tended to perform better without any sensor system to assist them but in more complicated environments then they performed better with the sensor systems.

Research limitations/implications

The time taken for a powered‐wheelchair to move from one place to another partly depends on how a human user interacts with the powered‐wheelchair. Wheelchair driving relies heavily on visual feedback and the experience of the drivers. Although attempts were made to remove variation in skill levels by using sets of data associated with each driver and then using paired statistical tests on those sets, some variation must still be present.

Practical implications

The paper presents new systems that could allow more people to use powered‐wheelchairs and also suggests that the amount of sensor support should be varied depending on circumstances.

Originality/value

The new systems described in the paper consistently performed driving tasks more quickly than the most recently published systems.

Details

Industrial Robot: An International Journal, vol. 38 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 June 2011

Bengi Aygün and Vehbi Cagri Gungor

The purpose of this paper is to provide a contemporary look at the current state‐of‐the‐art in wireless sensor networks (WSNs) for structure health monitoring (SHM) applications…

2026

Abstract

Purpose

The purpose of this paper is to provide a contemporary look at the current state‐of‐the‐art in wireless sensor networks (WSNs) for structure health monitoring (SHM) applications and discuss the still‐open research issues in this field and, hence, to make the decision‐making process more effective and direct.

Design/methodology/approach

This paper presents a comprehensive review of WSNs for SHM. It also introduces research challenges, opportunities, existing and potential applications. Network architecture and the state‐of‐the‐art wireless sensor communication technologies and standards are explained. Hardware and software of the existing systems are also clarified.

Findings

Existing applications and systems are presented along with their advantages and disadvantages. A comparison landscape and open research issues are also presented.

Originality/value

The paper presents a comprehensive and recent review of WSN systems for SHM applications along with open research issues.

Details

Sensor Review, vol. 31 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1989

Per Holmbom, Ole Pedersen, Bengt Sandell and Alexander Lauber

By tradition, sensors are used to measure one desired parameter; all other parameters influencing the sensor are considered as interfering inputs, to be eliminated if possible…

Abstract

By tradition, sensors are used to measure one desired parameter; all other parameters influencing the sensor are considered as interfering inputs, to be eliminated if possible. Hence most of existing sensors are specifically intended for measuring one parameter, e.g. temperature, and the ideal temperature sensor should be as immune to all other parameters as possible. True, we sometimes use primitive sensor fusion, e.g. when calculating heat flow by combining separate measurements of temperature difference and of fluid flow.

Details

Sensor Review, vol. 9 no. 3
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 20 June 2016

Chiew Loon Goh, Ruzairi Abdul Rahim and Mohd Hafiz Fazalul Rahiman

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively…

502

Abstract

Purpose

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively and non-intrusively visualizing and monitoring gas-liquid multi-phase flow in process plants in making sure that the industrial system has high quality control. Process tomography is a developing measurement technology for industrial flow visualization.

Design/methodology/approach

A review of types of tomographic systems that have been widely researched especially in the application of gas-liquid flow within the past 10 years was conducted. The sensor system operating fundamentals and assessment of each tomography technology are discussed and explained in detail.

Findings

Potential future research on gas-liquid flow in a conducting vessel using ultrasonic tomography sensor system is addressed.

Originality/value

The authors would like to undertake that the above-mentioned manuscript is original, has not been published elsewhere, accepted for publication elsewhere or under editorial review for publication elsewhere and that my Institute’s Universiti Teknologi Malaysia representative is fully aware of this submission.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 June 2011

David Sanders, Giles Tewkesbury, Ian J. Stott and David Robinson

The purpose of this paper is to investigate how to make tele‐operated tasks easier using an expert system to interpret joystick and sensor data.

Abstract

Purpose

The purpose of this paper is to investigate how to make tele‐operated tasks easier using an expert system to interpret joystick and sensor data.

Design/methodology/approach

Current tele‐operated systems tend to rely heavily on visual feedback and experienced operators. Simple expert systems improve the interaction between an operator and a tele‐operated mobile‐robot using ultrasonic sensors. Systems identify potentially hazardous situations and recommend safe courses of action. Because pairs of tests and results took place, it was possible to use a paired‐samples statistical test.

Findings

Results are presented from a series of timed tasks completed by tele‐operators using a joystick to control a mobile‐robot via an umbilical cable. Tele‐operators completed tests both with and without sensors and with and without the new expert system and using a recently published system to compare results. The t‐test was used to compare the means of the samples in the results.

Research limitations/implications

Time taken to complete a tele‐operated task with a mobile‐robot partly depends on how a human operator interacts with the mobile‐robot. Information about the environment was restricted and more effective control of the mobile‐robot could have been achieved if more information about the environment had been available, especially in tight spaces. With more information available for analysis, the central processor could have had tighter control of robot movements. Simple joysticks were used for the test and they could be replaced by more complicated haptic devices. Finally, each individual set of tests was not necessarily statistically significant so that caution was required before generalising the results.

Practical implications

The new systems described here consistently performed tasks more quickly than simple tele‐operated systems with or without sensors to assist. The paper also suggests that the amount of sensor support should be varied depending on circumstances. The paired samples test was used because people (tele‐operators) were inherently variable. Pairing removed much of that random variability. When results were analysed using a paired‐samples statistical test then results were statistically significant. The new systems described in this paper were significantly better at p<0.05 (95 per cent probability that this result would not occur by chance alone).

Originality/value

The paper shows that the new system performed every test faster on average than a recently published system used to compare the results.

Details

Sensor Review, vol. 31 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 August 2010

David A. Sanders, Jasper Graham‐Jones and Alexander Gegov

The purpose of this paper is to describe the use of simple expert systems to improve the performance of tele‐operated mobile robots and ultrasonic sensor systems. The expert…

Abstract

Purpose

The purpose of this paper is to describe the use of simple expert systems to improve the performance of tele‐operated mobile robots and ultrasonic sensor systems. The expert systems interpret data from the joystick and sensors and identify potentially hazardous situations and then recommend safe courses of action so that tele‐operated mobile‐robot tasks can be completed more quickly.

Design/methodology/approach

The speed of a tele‐operator in completing progressively more complicated driving tasks is investigated while using a simple expert system. Tele‐operators were timed completing a series of tasks using a joystick to control a mobile robot through a simple expert system that assisted them with driving the robot while using ultrasonic sensors to avoid obstacles. They either watched the robot while operating it or sat at a computer and viewed scenes remotely on a screen from a camera mounted on the robot. Tele‐operators completed tests with the simple expert system and the sensors connected. The system used an umbilical cable to connect to the robot.

Findings

The simple expert systems consistently performed faster than the other systems. Results are compared with the most recently published results and show a significant improvement. In addition, in simple environments, tele‐operators performed better without a sensor system to assist them but in more complicated environments than tele‐operators performed better with the sensor systems to assist.

Research limitations/implications

Simple expert systems are shown to improve the operation of a tele‐operated mobile robot with an obstacle avoidance systems fitted.

Practical implications

Tele‐operated systems rely heavily on visual feedback and experienced operators. This paper investigates how to make tasks easier. Simple expert systems are shown to improve the operation of a tele‐operated mobile robot. The paper also suggests that the amount of sensor support should be varied depending on circumstances.

Originality/value

The simple expert systems are shown in this paper to improve the operation of a tele‐operated mobile robot. Tele‐operators completed tests with the simple expert system and the sensors connected. The results are compared with a tele‐operator driving a mobile robot without any assistance from the expert systems or sensors and they show a significant improvement.

Details

Industrial Robot: An International Journal, vol. 37 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 June 2007

Gao Zhan‐feng, Du Yan‐liang, Sun Bao‐chen and Jin Xiu‐mei

The purpose of this article is to suggest that Fraby‐Perot optic sensor is a practical measurement gage to monitor the strain of great structures such as railway bridges.

1601

Abstract

Purpose

The purpose of this article is to suggest that Fraby‐Perot optic sensor is a practical measurement gage to monitor the strain of great structures such as railway bridges.

Design/methodology/approach

A remote strain monitoring system based on F‐P optic fiber and virtual instrument is designed to monitor the strains of a railway bridge.

Findings

The application results show that the Fraby‐Perot optical fiber sensors can accurately measure strain and they are suitable for the long‐term and automatic monitoring. In addition, the system has several advantages over conventional structural instruments including fast response, ability of both static and dynamic monitoring, absolute measurement, immunity to interferences such as lightning strikes, electromagnetic noise and radio frequency, low attenuation of light signals in long fiber optic cables.

Practical implications

Health monitoring of structures is getting more and more recognition all over the world because it can minimize the cost of reparation and maintenance and ensure the safety of structures. A strain monitoring system based on F‐P optic fiber sensor was developed according to the health monitoring requirements of Wuhu Yangtze River Railway Bridge, which is the first cable‐stayed bridge with a maximum span of 312 m carrying both railway and highway traffic in China. It has run stably in the monitoring field more than two years and fulfilled the monitoring requirement very well. Now the system has been transplanted successfully to the Zhengzhou Yellow Railway Bridge for strain monitoring. So the work can be referenced by other similar health monitoring projects.

Originality/value

Long‐term, real‐time monitoring of strain using FP fiber optic sensors in railway bridge is an innovation. A remote strain data acquisition and real‐time processing are another character of the system. The work studied can be referenced by other structures monitoring, such as tunnel, concrete bridges, concrete and earth dams.

Details

Journal of Quality in Maintenance Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 31 July 2009

David Sanders

The purpose of this paper is to investigate the effect on time to complete a task depending on how a human operator interacts with a mobile‐robot. Interaction is investigated…

1166

Abstract

Purpose

The purpose of this paper is to investigate the effect on time to complete a task depending on how a human operator interacts with a mobile‐robot. Interaction is investigated using two tele‐operated mobile‐robot systems, three different ways of interacting with robots and several different environments. The speed of a tele‐operator in completing progressively more complicated driving tasks is investigated also.

Design/methodology/approach

Tele‐operators are timed completing a series of tasks using a joystick to control a mobile‐robot. They either watch the robot while operating it, or sit at a computer and view scenes remotely on a screen. Cameras are either mounted on the robot, or so that they view both the environment and robot. Tele‐operators complete tests both with and without sensors. One robot system uses an umbilical cable and one uses a radio link.

Findings

In simple environments, a tele‐operator may perform better without a sensor system to assist them but in more complicated environments then a tele‐operator may perform better with a sensor system to assist. Tele‐operators may also tend to perform better with a radio link than with an umbilical connection. Tele‐operators sometimes perform better with a camera mounted on the robot compared with pre‐mounted cameras observing the environment (but that depends on tasks being performed).

Research limitations/implications

Tele‐operated systems rely heavily on visual feedback and experienced operators. This paper investigates how to make tasks easier.

Practical implications

The paper suggests that the amount of sensor support should be varied depending on circumstances.

Originality/value

Results show that human tele‐operators perform better without the assistance of a sensor systems in simple environments.

Details

Assembly Automation, vol. 29 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 22000