Search results

1 – 1 of 1
Article
Publication date: 10 October 2023

Pawan Bishnoi and Pankaj Chandna

This paper aims to optimize the single-point incremental forming process variables for realizing higher formability in Inconel 625 components and to plot the forming limit diagram…

Abstract

Purpose

This paper aims to optimize the single-point incremental forming process variables for realizing higher formability in Inconel 625 components and to plot the forming limit diagram for Inconel 625 aviation-grade superalloy.

Design/methodology/approach

The formability of Inconel 625 components has been measured in terms of major strain, minor strain and minimum sheet thickness. Response surface methodology with desirability function analysis has been used to achieve maximum formability. The finite element analysis has been conducted at optimal parametric setting.

Findings

The derived forming limit diagram proves that the maximum forming limit for Inconel 625 is 57.5° at the optimal parametric setting, achieved with desirability of 0.995. The outcomes of finite element analysis conducted at optimal parametric setting show excellent agreement with confirmation experiment results.

Practical implications

Inconel 625 superalloy is frequently used in aircraft and other high-performance applications for its superior strength.

Originality/value

It has been suggested that to enhance formability, higher tool rotation speed, minimum step-size, larger tooltip diameter and higher wall angle must be used. Wall angle is the governing parameter among all the parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Last 6 months (1)

Content type

Article (1)
1 – 1 of 1