Search results

1 – 3 of 3
Article
Publication date: 17 November 2023

Ahmad Ebrahimi and Sara Mojtahedi

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information…

Abstract

Purpose

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information and details about particular parts (components) repair and replacement during the warranty term, usually stored in the after-sales service database, can be used to solve problems in a variety of sectors. Due to the small number of studies related to the complete analysis of parts failure patterns in the automotive industry in the literature, this paper focuses on discovering and assessing the impact of lesser-studied factors on the failure of auto parts in the warranty period from the after-sales data of an automotive manufacturer.

Design/methodology/approach

The interconnected method used in this study for analyzing failure patterns is formed by combining association rules (AR) mining and Bayesian networks (BNs).

Findings

This research utilized AR analysis to extract valuable information from warranty data, exploring the relationship between component failure, time and location. Additionally, BNs were employed to investigate other potential factors influencing component failure, which could not be identified using Association Rules alone. This approach provided a more comprehensive evaluation of the data and valuable insights for decision-making in relevant industries.

Originality/value

This study's findings are believed to be practical in achieving a better dissection and providing a comprehensive package that can be utilized to increase component quality and overcome cross-sectional solutions. The integration of these methods allowed for a wider exploration of potential factors influencing component failure, enhancing the validity and depth of the research findings.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 29 April 2021

Samad M.E. Sepasgozar, Mohsen Ghobadi, Sara Shirowzhan, David J. Edwards and Elham Delzendeh

This paper aims to examine the current technology acceptance model (TAM) in the field of mixed reality and digital twin (MRDT) and identify key factors affecting users' intentions…

1734

Abstract

Purpose

This paper aims to examine the current technology acceptance model (TAM) in the field of mixed reality and digital twin (MRDT) and identify key factors affecting users' intentions to use MRDT. The factors are used as a set of key metrics for proposing a predictive model for virtual, augmented and mixed reality (MR) acceptance by users. This model is called the extended TAM for MRDT adoption in the architecture, engineering, construction and operations (AECO) industry.

Design/methodology/approach

An interpretivist philosophical lens was adopted to conduct an inductive systematic and bibliographical analysis of secondary data contained within published journal articles that focused upon MRDT acceptance modelling. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach to meta-analysis were adopted to ensure all key investigations were included in the final database set. Quantity indicators such as path coefficients, factor ranking, Cronbach’s alpha (a) and chi-square (b) test, coupled with content analysis, were used for examining the database constructed. The database included journal papers from 2010 to 2020.

Findings

The extant literature revealed that the most commonly used constructs of the MRDT–TAM included: subjective norm; social influence; perceived ease of use (PEOU); perceived security; perceived enjoyment; satisfaction; perceived usefulness (PU); attitude; and behavioural intention (BI). Using these identified constructs, the general extended TAM for MRDT in the AECO industry is developed. Other important factors such as “perceived immersion” could be added to the obtained model.

Research limitations/implications

The decision to utilise a new technology is difficult and high risk in the construction project context, due to the complexity of MRDT technologies and dynamic construction environment. The outcome of the decision may affect employee performance, project productivity and on-site safety. The extended acceptance model offers a set of factors that assist managers or practitioners in making effective decisions for utilising any type of MRDT technology.

Practical implications

Several constraints are apparent due to the limited investigation of MRDT evaluation matrices and empirical studies. For example, the research only covers technologies which have been reported in the literature, relating to virtual reality (VR), augmented reality (AR), MR, DT and sensors, so newer technologies may not be included. Moreover, the review process could span a longer time period and thus embrace a fuller spectrum of technology development in these different areas.

Originality/value

The research provides a theoretical model for measuring and evaluating MRDT acceptance at the individual level in the AECO context and signposts future research related to MRDT adoption in the AECO industry, as well as providing managerial guidance for progressive AECO professionals who seek to expand their use of MRDT in the Fourth Industrial Revolution (4IR). A set of key factors affecting MRDT acceptance is identified which will help innovators to improve their technology to achieve a wider acceptance.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 February 2022

Mehran Nouri, Sara Sohaei, Mohammed Nader Shalaby, Sanaz Mehrabani, Atena Ramezani and Shiva Faghih

This paper aims to assess the impact of curcumin supplementation body mass index and glycemic indices in women with polycystic ovary syndrome (PCOS).

Abstract

Purpose

This paper aims to assess the impact of curcumin supplementation body mass index and glycemic indices in women with polycystic ovary syndrome (PCOS).

Design/methodology/approach

A systematic search of the literature was conducted in PubMed, Scopus and ISI web of science to identify all randomized controlled trials (RCTs) published from the earliest record up to February 2021. The authors used a random-effects model to estimate pooled effect sizes.

Findings

A total of four potentially related clinical trials met the inclusion criteria which included a total of 198 participants. Random-effects meta-analysis showed significant effects of curcumin on fasting blood sugar (FBS) (−3.62 mg/dl, 95% CI [−5.65, −1.58], p-value < 0.001, I2 = 0.0%), insulin level (−1.67 µU/mL, 95% CI [−3.06, −0.28], p-value = 0.018, I2 = 0.0%) and homeostasis model of assessment insulin resistance (HOMA-IR) (−0.42, 95% CI [−0.76, −0.09], p-value < 0.01, I2 = 0.0%). No evidence of publication bias was discovered in the meta-analyses.

Originality/value

Present systematic review and meta-analysis of RCTs showed beneficial effects of curcumin consumption on FBS, insulin level and HOMA-IR in patients with PCOS. However, further large-scale studies are needed to confirm these results.

Details

Nutrition & Food Science , vol. 52 no. 7
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 3 of 3