Search results

1 – 6 of 6
Article
Publication date: 24 July 2023

Rachaita Dutta, Soumik Das, Shishir Gupta, Aditi Singh and Harsh Chaudhary

The purpose of this study is to analyze the thermo-diffusion process in a semi-infinite nonlocal fiber-reinforced double porous thermoelastic diffusive material with voids…

Abstract

Purpose

The purpose of this study is to analyze the thermo-diffusion process in a semi-infinite nonlocal fiber-reinforced double porous thermoelastic diffusive material with voids (FRDPTDMWV) in light of the fractional-order Lord–Shulman thermo-elasto-diffusion (LSTED) model. By virtue of Eringen’s nonlocal elasticity theory, the governing equations for the considered material are developed. The free surface of the substrate is governed by the inclined mechanical load and thermal and chemical shocks.

Design/methodology/approach

With the aid of the normal mode technique, the solutions of the nondimensional coupled governing equations have been obtained.

Findings

The expressions of field variables are obtained analytically. By using MATHEMATICA software, various graphical implementations are presented to describe the impacts of angle of inclination, fractional-order and nonlocality parameters. The present model is also validated on the basis of some comparative studies with some preestablished cases.

Originality/value

As observed from the literature survey, many different studies have been carried out by taking into account the deformation analysis in nonlocal double porous thermoelastic material structures and thermo-mechanical interaction in fiber-reinforced medium under fractional-order thermoelasticity theories. However, to the best of the authors’ knowledge, no research emphasizing the thermo-elasto-diffusive interactions in a nonlocal FRDPTDMWV has been carried out. Moreover, the effect of fractional-order LSTED theory on fiber-reinforced thermoelastic diffusive half-space with double porosity has not been illuminated till now, which significantly defines the novelty of the conducted research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 August 2023

Sohit Jatain, Sunita Deswal and Kapil Kumar Kalkal

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model…

Abstract

Purpose

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model is used to study the coupling between elastic waves and plasma waves generated due to thermal changes in a micropolar elastic medium.

Design/methodology/approach

Normal mode analysis is used to obtain the analytical solutions of the governing equations.

Findings

Effects of magnetic field, micropolarity, photothermal and time are highlighted on various physical fields such as stresses, temperature, displacement and carrier density. The above physical fields also conform to the boundary conditions. It is further observed that all the physical quantities become zero outside some bounded region of space, thus confirming the notion of generalized theory of thermoelasticity.

Originality/value

The values of physical fields are computed numerically using MATLAB software considering material constants for silicon. Furthermore, the effects are depicted graphically and analyzed accordingly. The study is valuable for the analysis of thermoelastic problems involving magnetic field, micropolarity and elastic deformations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2024

Reima Daher Alsemiry, Rabea E. Abo Elkhair, Taghreed H. Alarabi, Sana Abdulkream Alharbi, Reem Allogmany and Essam M. Elsaid

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels…

Abstract

Purpose

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels, can also lead to the death of many patients. Therefore, it was necessary to try to control the shear and normal stresses on these veins through nanoparticles in the presence of some external forces, such as exposure to some electromagnetic shocks, to reduce the risk of high pressure and stress on those blood vessels. This study aims to examines the shear and normal stresses of electroosmotic-magnetized Sutterby Buongiorno’s nanofluid in a symmetric peristaltic channel with a moderate Reynolds number and curvature. The production of thermal radiation is also considered. Sutterby nanofluids equations of motion, energy equation, nanoparticles concentration, induced magnetic field and electric potential are calculated without approximation using small and long wavelengths with moderate Reynolds numbers.

Design/methodology/approach

The Adomian decomposition method solves the nonlinear partial differential equations with related boundary conditions. Graphs and tables show flow features and biophysical factors like shear and normal stresses.

Findings

This study found that when curvature and a moderate Reynolds number are present, the non-Newtonian Sutterby fluid raises shear stress across all domains due to velocity decay, resulting in high shear stress. Additionally, modest mobility increases shear stress across all channel domains. The Sutterby parameter causes fluid motion resistance, which results in low energy generation and a decrease in the temperature distribution.

Originality/value

Equations of motion, energy equation, nanoparticle concentration, induced magnetic field and electric potential for Sutterby nano-fluids are obtained without any approximation i.e. the authors take small and long wavelengths and also moderate Reynolds numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 October 2023

Shilpa Chaudhary, Sunita Deswal and Sandeep Singh Sheoran

This study aims to analyse the behaviour of plane waves within a nonlocal transversely isotropic visco-thermoelastic medium having variable thermal conductivity.

105

Abstract

Purpose

This study aims to analyse the behaviour of plane waves within a nonlocal transversely isotropic visco-thermoelastic medium having variable thermal conductivity.

Design/methodology/approach

The concept of enunciation is used in the generalized theory of thermoelasticity in accordance with the Green–Lindsay and Eringen’s nonlocal elasticity models. The linear viscoelasticity model developed by Kelvin–Voigt is used to characterize the viscoelastic properties of transversely isotropic materials.

Findings

It has been noticed that three plane waves, which are coupled together, travel through the medium at three different speeds. The derivation of reflection coefficients and energy ratios for reflected waves is carried out by incorporating suitable boundary conditions. Numerical computations are performed for the amplitude ratios, phase speeds and energy partition and displayed in graphical form.

Originality/value

The outcomes of the numerical simulation demonstrate that the amplitude ratios are significantly influenced by variable thermal conductivity, nonlocal parameters and viscosity. It is further observed from the plots that the phase speeds in a transversely isotropic medium depend on the angle of incidence. In addition, it has been established that the energy is preserved during the reflection phenomenon.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 March 2023

Manjeet Kumar, Pradeep Kaswan, Nantu Sarkar, Xu Liu and Manjeet Kumari

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal…

Abstract

Purpose

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal generalized thermoelastic media.

Design/methodology/approach

The bulk waves are represented with Helmholtz potentials. The stress-free insulated and isothermal plane surfaces are taken into account. Rayleigh wave dispersion relation has been established and is found to be complex. Due to the presence of radicals, the dispersion equation is continuously computed as a complicated irrational expression. The dispersion equation is then converted into a polynomial equation that can be solved numerically for precise complex roots. The extra zeros in this polynomial equation are eliminated to yield the dispersion equation’s roots. These routes are then filtered for inhomogeneous wave propagation that decays with depth. To perform numerical computations, MATLAB software is used.

Findings

In this medium, only one mode of Rayleigh wave exists at both isothermal and insulated boundaries. The thermal factors of nonlocal generalized thermoelastic materials significantly influence the particle motion, attenuation and phase velocity of the Rayleigh wave.

Originality/value

Numerical examples are taken to examine how the thermal characteristics of materials affect the existing Rayleigh wave’s propagation characteristics. Graphical analysis is used to evaluate the behavior of particle motion (such as elliptical) both inside and at the isothermal (or insulated) flat surface of the medium under consideration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow…

Abstract

Purpose

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow in a lid-driven square enclosure with heat generation in the presence of a porous layer on inner surfaces, considering local thermal non-equilibrium (LTNE) approach and the non-Darcy flow model.

Design/methodology/approach

The dimensionless governing equations for hybrid nanofluid and solid phases are solved by applying the finite volume method and semi-implicit method for pressure-linked equations algorithm.

Findings

The roles of the internal heat generation in the porous layer, LTNE model and nanoparticles volume fraction on mixed convection phenomenon and entropy generation are introduced for lid-driven cavity hybrid nanofluid flow. Based on the investigation of entropy generation and heat transfer, the minimum total entropy generation and average Nusselt numbers are found at 1 ≤ Ri ≤ 10 where the effect of the forced and free convection flow directions being opposite each other is very significant. When considering various nanoparticle volume fractions, it becomes evident that the minimum entropy generation occurs in the case of φ = 0.1%. The outcomes of LTNE number reveal the operating parameters in which thermal equilibrium occurs between hybrid nanofluid and solid phases.

Originality/value

The analysis of entropy generation under various shear and buoyancy forces plays a significant role in the suitable thermal design and optimization of mixed convective heat transfer applications. This research significantly contributes to the optimization of design and the advancement of innovative solutions across diverse engineering disciplines, such as packed-bed thermal energy storage and thermal insulation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 6 of 6