Search results

1 – 3 of 3
Article
Publication date: 28 December 2023

Vikram Singh, Nirbhay Sharma and Somesh Kumar Sharma

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in…

Abstract

Purpose

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in Manufacturing Industries.

Design/methodology/approach

This study formulated a framework of six factors and twenty-eight variables (explored in the literature). A hybrid approach of Multi-Criteria Decision-Making Technique (MCDM) was employed in the framework to prioritize, rank and establish interrelationships between factors and variables grouped under them.

Findings

The research findings reveal that the “Manufacturing Process” is the most essential factor, while “Integration Manufacturing with Maintenance” is highly impactful on the other factors to eliminate the flaws that may cause system breakdown. The findings of this study also provide a ranking order for variables to increase the performance of factors that will assist manufacturers in reducing maintenance efforts and enhancing process efficiency.

Practical implications

The ranking order developed in this study may assist manufacturers in reducing maintenance efforts and enhancing process efficiency. From the manufacturer’s perspective, this research presented MAT as a key aspect in dealing with the complexity of manufacturing operations in manufacturing organizations. This research may assist industrial management with insights into how they can lower the probability of breakdown, which will decrease expenditures, boost productivity and enhance overall efficiency.

Originality/value

This study is an original contribution to advancing MAT’s theory and empirical applications in manufacturing organizations to decrease breakdown probability.

Article
Publication date: 18 April 2024

Ramads Thekkoote

This paper uses the complex proportionality assessment (COPRAS) method to examine the driving factors of Industry 4.0 (I4) technologies for lean implementation in small and…

Abstract

Purpose

This paper uses the complex proportionality assessment (COPRAS) method to examine the driving factors of Industry 4.0 (I4) technologies for lean implementation in small and medium-sized enterprises (SMEs).

Design/methodology/approach

Adopting I4 technology is imperative for SMEs seeking to maintain competitiveness within the manufacturing sector. A thorough understanding of the driving factors involved is required to support the implementation of I4. For this objective, the multi-criteria decision-making (MCDM) tool COPRAS was used to efficiently analyze and rank these driving elements based on their importance. These factors can help small and medium-sized firms (SMEs) prioritize their efforts and investments in I4 technologies for lean implementation.

Findings

This study evaluates and prioritizes the nine I4 factors according to the perceptions of SMEs. The ranking offers significant insights into the factors SMEs consider more accessible and effective when adopting I4 technologies.

Originality/value

The author's original contribution is to examine I4 driving factors for lean implementation in SMEs using COPRAS.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 18 March 2024

Nuno Miguel de Matos Torre and Andrei Bonamigo

Maintenance represents an indispensable role in the productive sector of the steel industry. The increasing use of operating with a high level of precision makes hydraulic systems…

Abstract

Purpose

Maintenance represents an indispensable role in the productive sector of the steel industry. The increasing use of operating with a high level of precision makes hydraulic systems one of the issues that require a high level of attention. This study aims to explore an empirical investigation for decreasing the occurrences of corrective maintenance of hydraulic systems in the context of Lean 4.0.

Design/methodology/approach

The maintenance model is developed based on action-research methodology through an empirical investigation, with nine stages. This approach aims to build a scenario to analyze and interpret the occurrences, seeking to implement and evaluate the actions to be performed. The undertaken initiatives demonstrate that this approach can be applied to optimize the maintenance of an organization.

Findings

The main contribution of this paper is to demonstrate that the applied method allows the overviewing results, with a qualitative approach concerning the maintenance actions and management processes to be considered, allowing a holistic understanding and contributing to the current literature. The results also indicated that Lean 4.0 has direct and mediating effects on maintenance performance.

Originality/value

This research intends to propose an evaluation framework with an interdimensional linkage between action research methodology and Lean 4.0, to explore an empirical investigation and contributing to understanding the actions to reduce the occurrences of hydraulic systems corrective maintenance in a production line in the steel industry.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 3 of 3