Search results

1 – 10 of over 1000
Article
Publication date: 13 June 2024

Chen Yu and Wei Tian

This paper aims to investigate the application of 3D printing technology, particularly using sand-type materials, in the creation of artificial rock models for rock mechanics…

Abstract

Purpose

This paper aims to investigate the application of 3D printing technology, particularly using sand-type materials, in the creation of artificial rock models for rock mechanics experimentation.

Design/methodology/approach

Using a comprehensive analysis, this research explores the utilization of 3D printing technology in rock mechanics. Sand-type materials are specifically investigated for their ability to replicate natural rock characteristics. The methodology involves a review of recent achievements and experimentation in this field.

Findings

The study reveals that sand-type 3D printing materials demonstrate comparable properties to natural rocks, including brittle characteristics, surface roughness, microstructural features and crack propagation patterns.

Research limitations/implications

While the research establishes the viability of sand-type 3D printing materials, it acknowledges limitations such as the need for further exploration and validation. Generalizability may be constrained, warranting additional research to address these limitations.

Originality/value

This research contributes insights into the potential application of sand-type 3D printing materials in indoor rock physics experiments. The findings may guide future endeavors in fabricating rock specimens with consistent structures for practical rock mechanics applications.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 1992

S.K. CHOI

Some aspects of the distinct element method (DEM) are reviewed. A model for fully grouted reinforcement subjected to axial and/or shear force(s) is proposed. The modelling of some…

Abstract

Some aspects of the distinct element method (DEM) are reviewed. A model for fully grouted reinforcement subjected to axial and/or shear force(s) is proposed. The modelling of some rock mechanics problems, by incorporating the reinforcement model into the DEM is presented. A general discussion on the application of the DEM in rock mechanics, and some of the difficulties that may be encountered, based on the author's experience, are also included.

Details

Engineering Computations, vol. 9 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 25 April 2022

Afikah Binti Rahim and Hareyani Zabidi

The correlations between mechanical behaviour, tensile strength, and rock parameters of metasedimentary rock samples in Karak, Pahang’s New Austrian Tunnelling Method (NATM) were

Abstract

The correlations between mechanical behaviour, tensile strength, and rock parameters of metasedimentary rock samples in Karak, Pahang’s New Austrian Tunnelling Method (NATM) were statistically evaluated from the rock mechanic laboratory works at the selected sections around 2,000 m of the tunnel (named as NATM-1). According to a statistical analysis, lithotypes, geological structures, and region geology have a significant impact on the mechanical behaviour of the metasedimentary rock. In the Brazilian test, the fracture behaviour of the disc specimens was highly related to the reliability and precision of the experimental data by validations of methods. In this work, the impact of different loading methods and rock lithotypes on the failure mechanism of Brazilian discs was examined utilising five different metasedimentary rock types and three different loading methods. During the loading operation, the strain and displacement fields of the specimens were recorded and evaluated using a computerised strain gauge system. The rock types, according to experimental data, have a significant impact on the peak load and deformation properties of Brazilian discs. With the method below, tensile strength point of a disc specimen is clearly regulated by the material stiffness and tensile–compression ratio. Seismic occurrences have had a substantial impact on changing the rock and exerting forces that may affect its mechanical characteristics as well as its vulnerability to weathering effects or discontinuities. As a result, the goal of this study is to look into the connection between rock mechanics and metasedimentary rock stress analysis in NATM-1, Karak, Pahang.

Details

Sustainability Management Strategies and Impact in Developing Countries
Type: Book
ISBN: 978-1-80262-450-2

Keywords

Article
Publication date: 22 August 2023

Yongliang Wang, Ruiguang Feng, Dongping Li and Ruidong Peng

The induction of geological disasters is predominantly influenced by the dynamic evolution of the stress and plastic zones of the multilayer rock formations surrounding deep-rock…

Abstract

Purpose

The induction of geological disasters is predominantly influenced by the dynamic evolution of the stress and plastic zones of the multilayer rock formations surrounding deep-rock roadways, and the behaviours and mechanisms of high in situ stress are key scientific issues related to deep-resource exploitation. The stress environment of deep resources is more complex owing to the influence of several geological factors, such as tectonic movements and landforms. Therefore, in practical engineering, the in situ stress field is in a complex anisotropic three-dimensional state, which may change the deformation and failure law of the surrounding rock. The purpose of this study is to investigate the tunnelling-induced stress and plastic evolution causing instability of multilayered surrounding rock by varying three-dimensional in situ stresses.

Design/methodology/approach

Based on data from the Yangquan Coal Mine, China, a finite difference model was established, and the elastic-plastic constitutive model and element deletion technology designed in the study were analysed. Gradual tunnelling along the roof and floor of the coal seam was used in the model, which predicted the impact tendency, and compared the results with the impact tendency report to verify the validity of the model. The evolutions of the stress field and plastic zone of the coal roadway in different stress fields were studied by modifying the maximum horizontal in situ stress, minimum horizontal in situ stress and lateral pressure coefficient.

Findings

The results shown that the in situ stress influenced the stress distribution and plastic zone of the surrounding rock. With an increase in the minimum horizontal in situ stress, the vertical in situ stress release area of the roof surrounding rock slowly decreased; the area of vertical in situ stress concentration area of the deep surrounding rock on roadway sides decreased, increased and decreased by turn; the area of roof now-shear failure area first increased and then decreased. With an increase in the lateral pressure coefficient, the area of the horizontal in situ stress release area of the surrounding rock increased; the area of vertical in situ stress release area of the roof and floor surrounding rock first decreased and then increased; the area of deep stress concentration area of roadway sides decreased; and the plastic area of the surrounding rock and the area of now-shear failure first decreased and then increased.

Originality/value

The results obtained in this study are based on actual cases and reveal the evolution law of the disturbing stress and plastic zone of multilayer surrounding rock caused by three-dimensional in situ stress during the excavation of deep rock roadways, which can provide a practical reference for the extraction of deep resources.

Article
Publication date: 24 August 2018

Bin Chen, Song Cen, Andrew R. Barron, D.R.J. Owen and Chenfeng Li

The purpose of this paper is to systematically investigate the fluid lag phenomena and its influence in the hydraulic fracturing process, including all stages of fluid-lag…

1170

Abstract

Purpose

The purpose of this paper is to systematically investigate the fluid lag phenomena and its influence in the hydraulic fracturing process, including all stages of fluid-lag evolution, the transition between different stages and their coupling with dynamic fracture propagation under common conditions.

Design/methodology/approach

A plane 2D model is developed to simulate the complex evolution of fluid lag during the propagation of a hydraulic fracture driven by an impressible Newtonian fluid. Based on the finite element method, a fully implicit solution scheme is proposed to solve the strongly coupled rock deformation, fluid flow and fracture propagation. Using the proposed model, comprehensive parametric studies are performed to examine the evolution of fluid lag in various geological and operational conditions.

Findings

The numerical simulations predict that the lag ratio is around 5% or even lower at the beginning stage of hydraulic fracture under practical geological conditions. With the fracture propagation, the lag ratio keeps decreasing and can be ignored in the late stage of hydraulic fracturing for typical parameter combinations. On the numerical aspect, whether the fluid lag can be ignored depends not only on the lag ratio but also on the minimum mesh size used for fluid flow. In addition, an overall mixed-mode fracture propagation factor is proposed to describe the relationship between diverse parameters and fracture curvature.

Research limitations/implications

In this study, relatively simple physical models such as linear elasticity for solid, Newtonian model for fluid and linear elasticity fracture mechanics for fracture are used. The current model does not account for such effects like leak off, poroelasticity and softening of rock formations, which may also visibly affect the fluid lag depending on specific reservoir conditions.

Originality/value

This study helps to understand the effect of fluid lag during hydraulic fracturing processes and provides numerical experience in dealing with the fluid lag with finite element simulation.

Details

Engineering Computations, vol. 35 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1992

PETER A. CUNDALL and ROGER D. HART

Discrete element methods are numerical procedures for simulating the complete behaviour of systems of discrete, interacting bodies. Three important aspects of discrete element…

2666

Abstract

Discrete element methods are numerical procedures for simulating the complete behaviour of systems of discrete, interacting bodies. Three important aspects of discrete element programs are examined: (1) the representation of contacts; (2) the representation of solid material; and (3) the scheme used to detect and revise the set of contacts. A proposal is made to define what constitutes a discrete element program, and four classes of such programs are described: the distinct element method, modal methods, discontinuous deformation analysis and the momentum‐exchange method. Several applications and examples are presented, and a list is given of suggestions for future developments.

Details

Engineering Computations, vol. 9 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1992

RICARDO DOBRY and AND TANG‐TAT NG

A general overview is presented on applications of the discrete element method (DEM) to granular media. A literature survey is performed of static and dynamic simulations using…

Abstract

A general overview is presented on applications of the discrete element method (DEM) to granular media. A literature survey is performed of static and dynamic simulations using random arrays of compliant particles, and forty‐two references published mostly in the last ten years are identified and categorized according to a number of relevant criteria. It is concluded that the interest in the use of the technique is rapidly increasing in the research and engineering community, with applications concentrated in soil mechanics, rock mechanics, grain flow and engineering problems. Additional studies and verifications of some numerical aspects of the DEM technique are suggested including parametric studies and comparisons. Program CONBAL‐2 (CONTACT + TRUBAL in 2D) developed by the authors based on TRUBAL created by Strack and Cundall, is described. CONBAL‐2 uses the complete Mindlin solution for the contact between two spheres and thus can be used for small strain and cyclic loading. The program is applied to study the cyclic response of uniform, medium dense to dense rounded quartz sand. Cyclic strain‐controlled loading at constant volume is applied to isotropically consolidated, random arrays of 531 spheres, using cyclic strains ranging from 10–4% to 10–1%. The calculated shear modulus, Gmax, constrained modulus, D, and Poisson's ratio at small strains are correlated with the confining pressure, the porosity of the array, and the coordination number. The calculated variations of secant modulus and damping ratio with cyclic strain compare favourably with the experimental results on sands compiled by Seed and Idriss. Finally, ‘pore water pressure buildup’ and cyclic stiffness degradation of the material with number of cycles is calculated at a cyclic strain of 10–1%, and the prediction is found to represent closely cyclic undrained experiments on sands. The existence of a threshold strain, yt ≈ 10–2%, found experimentally, is also predicted by the simulations.

Details

Engineering Computations, vol. 9 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 August 2024

Yongliang Wang, Yongcai Zhao and Xin Zhang

The purpose of this study is to simulate the tensile and shear types of fractures using the mixed fracture criteria considering the energy evolution based on the dual bilinear…

Abstract

Purpose

The purpose of this study is to simulate the tensile and shear types of fractures using the mixed fracture criteria considering the energy evolution based on the dual bilinear cohesive zone model and investigate the dynamic propagation of tensile and shear fractures induced by an impact load in rock. The propagation of tension and shear at different scales induced by the impact load is also an important aspect of this study.

Design/methodology/approach

In this study, based on the well-developed dual bilinear cohesive zone model and combined finite element-discrete element method, the dynamic propagation of tensile and shear fractures induced by the impact load in rock is investigated. Some key technologies, such as the governing partial differential equations, fracture criteria, numerical discretisation and detection and separation, are introduced to form the global algorithm and procedure. By comparing with the tensile and shear fractures induced by the impact load in rock disc in typical experiments, the effectiveness and reliability of the proposed method are well verified.

Findings

The dynamic propagation of tensile and shear fractures in the laboratory- and engineering-scale rock disc and rock strata are derived. The influence of mesh sensitivity, impact load velocities and load positions are investigated. The larger load velocities may induce larger fracture width and entire failure. When the impact load is applied near the left support constraint boundary, concentrated shear fractures appear around the loading region, as well as induced shear fracture band, which may induce local instability. The proposed method shows good applicability in studying the propagation of tensile and shear fractures under impact loads.

Originality/value

The proposed method can identify fracture propagation via the stress and energy evolution of rock masses under the impact load, which has potential to be extended into the investigation of the mixed fractures and disturbance of in-situ stresses during dynamic strata mining in deep energy development.

Article
Publication date: 14 July 2022

Yongliang Wang, Jin Huang and Guocheng Wang

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration…

Abstract

Purpose

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration, plastic deformation and rock strata compression deformation. The depth of deep resources, excavation rate and multilayered heterogeneity are critical factors of excavation disturbance in deep rock. However, at present, there are few engineering practices used in deep resource mining, and it is difficult to analyse the high in situ stress and dynamic three-dimensional (3D) excavation process in laboratory experiments. As a result, an understanding of the behaviours and mechanisms of the dynamic evolution of the stress field and plastic zone in deep tunnelling and mining surrounding rock is still lacking.

Design/methodology/approach

This study introduced a 3D engineering-scale finite element model and analysed the scheme involved the elastoplastic constitutive and element deletion techniques, while considering the influence of the deep rock mass of the roadway excavation, coal seam mining-induced stress, plastic zone in the process of mining disturbance of the in situ stress state, excavation rate and layered rock mass properties at the depths of 500 m, 1,500 m and 2,500 m of several typical coal seams, and the tunnelling and excavation rates of 0.5 m/step, 1 m/step and 2 m/step. An engineering-scale numerical model of the layered rock and soil body in an actual mining area were also established.

Findings

The simulation results of the surrounding rock stress field, dynamic evolution and maximum value change of the plastic zone, large deformation and settlement of the layered rock mass are obtained. The numerical results indicate that the process of mining can be accelerated with the increase in the tunnelling and excavation rate, but the vertical concentrated stress induced by the surrounding rock intensifies with the increase in the excavation rate, which becomes a crucial factor affecting the instability of the surrounding rock. The deep rock mass is in the high in situ stress state, and the stress and plastic strain maxima of the surrounding rock induced by the tunnelling and mining processes increase sharply with the excavation depth. In ultra-deep conditions (depth of 2,500 m), the maximum vertical stress is quickly reached by the conventional tunnelling and mining process. Compared with the deep homogeneous rock mass model, the multilayered heterogeneous rock mass produces higher mining-induced stress and plastic strain in each layer during the entire process of tunnelling and mining, and each layer presents a squeeze and dislocation deformation.

Originality/value

The results of this study can provide a valuable reference for the dynamic evolution of stress and plastic deformation in roadway tunnelling and coal seam mining to investigate the mechanisms of in situ stress at typical depths, excavation rates, stress concentrations, plastic deformations and compression behaviours of multilayered heterogeneity.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 June 2022

Ke Ma, Yu Li, Guoyang Liu, Gang He, Chun Sha and Yilin Peng

The purpose of this study is to investigate the deformation characteristics and failure modes of the right bank slope of Xiluodu Hydropower Station after excavation.

Abstract

Purpose

The purpose of this study is to investigate the deformation characteristics and failure modes of the right bank slope of Xiluodu Hydropower Station after excavation.

Design/methodology/approach

Micro-seismic monitoring technology is applied to obtain the microfracture information and study the internal damage evolution law of the slope rock mass. A numerical model for discontinuous deformation analysis (DDA) is established to analyse the deformation characteristics and failure mode of the slope. Micro-seismic monitoring and DDA can verify and supplement each other's results in the investigation of slope failure.

Findings

The results show that the slope has a downhill displacement along the weathered zone under natural conditions; the maximum resultant displacement at the monitoring point is 380 mm. The micro-seismic events are concentrated in an area located 30–100 m horizontally away from the slope surface and at an elevation of 390–470 m. The distribution of these micro-seismic events is consistent with the location of the unloading and weathered zones; it is the same as the DDA simulation result.

Originality/value

The study is anticipated to be used as reference for the stability analysis of rock slopes. By combining the continuous (micro-seismic monitoring technology) and discontinuous (DDA) methods, the entire process starting from the gradual accumulation of internal rock micro-damage to the macroscopic discontinuous deformation and failure of the slope can be investigated.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000