Search results

1 – 10 of over 1000
Content available
Article
Publication date: 13 November 2023

Sheuli Paul

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this…

1043

Abstract

Purpose

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its communication potentials. The author seeks to define the available automation capabilities in communication using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic platform to advance the speed and quality of military operational and tactical decision making.

Design/methodology/approach

This review will begin by presenting key developments in the robotic interaction field with the objective of identifying essential technological developments that set conditions for robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction (HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the paper then proceeds to describe the gaps in the application areas that will require extension and integration to enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a recapitulation of the IRS challenge that will set conditions for future success.

Findings

Using insights from a balanced cross section of sources from the government, academic, and commercial entities that contribute to HRI a multimodal IRS in military communication is introduced. Multimodal IRS (MIRS) in military communication has yet to be deployed.

Research limitations/implications

Multimodal robotic interface for the MIRS is an interdisciplinary endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal interaction. Each mode of this multimodal communication is an active research area. Multimodal human/military robot communication is the ultimate goal of this research.

Practical implications

A multimodal autonomous robot in military communication using speech, images, gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit the opportunities for human–machine teaming (HMT) exposure. Naval and air forces will adopt platform specific suites for specially selected operators to integrate with and leverage this emerging technology. The possession of a flexible communications means that readily adapts to virtual training will enhance planning and mission rehearsals tremendously.

Social implications

Interaction, perception, cognition and visualization based multimodal communication system is yet missing. Options to communicate, express and convey information in HMT setting with multiple options, suggestions and recommendations will certainly enhance military communication, strength, engagement, security, cognition, perception as well as the ability to act confidently for a successful mission.

Originality/value

The objective is to develop a multimodal autonomous interactive robot for military communications. This survey reports the state of the art, what exists and what is missing, what can be done and possibilities of extension that support the military in maintaining effective communication using multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is no integrated approach for multimodal human robot interaction that proposes a flexible and agile communication. The report briefly introduces the research proposal about multimodal interactive robot in military communication.

Article
Publication date: 20 June 2016

Robert Bogue

This paper aims to provide an overview of robots presently in use by the military and an insight into some that are under development.

Abstract

Purpose

This paper aims to provide an overview of robots presently in use by the military and an insight into some that are under development.

Design/methodology/approach

Following a short introduction, this paper first considers existing applications of robots in the military field, including details of Russian weaponised ground robots. It then highlights a range of military robot developments and concludes with a brief discussion.

Findings

Drones (unmanned aerial vehicles) and small unmanned ground vehicles (UGVs) are among the most widely used robots by the military. Russia is developing a growing armoury of heavily weaponised UGVs, some of which were recently deployed in Syria. Some topics of development include humanoid robots, powered exoskeletons, load-carrying robots, micro-air vehicles and autonomous land vehicles. Robots will play an ever-growing role in military actions, and while some developments offer longer-term prospects, others are expected to be deployed in the near future.

Originality/value

Robots are playing an increasingly important role in military conflicts, and this provides details of present-day and anticipated future uses of robots by the military.

Details

Industrial Robot: An International Journal, vol. 43 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 December 2023

Robert Bogue

The purpose of this paper is to provide a detailed insight into the global military robot industry with an emphasis on products and their applications.

Abstract

Purpose

The purpose of this paper is to provide a detailed insight into the global military robot industry with an emphasis on products and their applications.

Design/methodology/approach

Following an introduction which includes a brief historical account, this provides an industry overview, including various market dimensions and a discussion of the geopolitical and technological factors driving market development. The three following sections provide details of land, airborne and marine robots, their capabilities and deployments in recent conflicts. Finally, brief conclusions are drawn.

Findings

Military robots which operate on land, in the air and at sea constitute a multi-billion dollar industry which is growing rapidly. It is being driven by geopolitical tensions, notably the military-technology arms race between China and the USA and the conflict in Ukraine, together with technological progress, particularly in AI. Many robots possess multi-functional capabilities, and the leading application is presently intelligence, surveillance and reconnaissance. An increasing number of heavily armed robots are being developed, and AI has the potential to impart these with the capacity to deliver lethal force without human intervention. Although heavily criticised in some quarters, this capability has probably already been deployed on the battlefield. With ever-growing military budgets, escalating political tensions and technological innovations, robots will play an increasingly significant role in future conflicts.

Originality/value

This provides a detail account of military robots and their role in modern warfare.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 June 2021

Joanne Pransky

The purpose of this paper is to provide a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and…

Abstract

Purpose

The purpose of this paper is to provide a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, industry engineer-turned entrepreneur regarding his pioneering efforts in bringing a robotic invention to market. This paper aims to discuss these issues.

Design/methodology/approach

The interviewee is Geoff Howe, Senior Vice President of Howe & Howe, Inc., a subsidiary of Textron Systems and a leader in advanced robotic platform solutions and applications built and proven for the most extreme conditions in the world. Geoff and Michael Howe founded Howe & Howe Technologies in 2001 and was acquired by Textron Systems in 2018. In 2010, Howe and Howe developed one of the world’s first robotic fire-fighting solutions. Geoff Howe describes the evolution of the Thermite robotic firefighter’s commercial development, along with the challenges of breaking ground in this new industry.

Findings

Geoff and his identical twin brother, Michael Howe, are inventors, military contractors, actors and entrepreneurial businessmen famous for their philanthropic drive to give back to their community. When Geoff and Mike were just six years old, they were known as “Howe and Howe Construction.” At the age of eight, Mike and Geoff built their own one room log cabin with the power tools their mom had given them for their birthday. At 16 years old, they started tinkering with vehicles before they even had their drivers’ licenses. They both graduated from Maine high school and colleges with honors. The company’s portfolio includes the RIPSAW® , Thermite, the Badger, Subterranean Rover and other extreme vehicles used for numerous applications. In 2010, Howe and Howe completed three new vehicles. First was the Thermite™ which entered the unmanned ground vehicle (UGV) market as the USA’s first firefighting UGV. The second vehicle was Ripchair™, the development of an off-road wheelchair for those that have become disabled and are unable to walk. The third vehicle was Riptide, the amphibious version of the RIPSAW. Year 2015 saw the commercial development of the Big Dog Extreme 4x4 fire truck and the Thermite RS1 and RS3 firefighting robots. The Big Dog is an off-road truck and also serves as an all-terrain multi-use firetruck. The Thermite provides firefighters and first responders immediate eyes inside the fire as well the ability to safely attack industrial, chemical and HAZMAT fires from their core. The Thermite robot provides safety and inside access on containing and defeating fires of any magnitude.

Originality/value

Howe & Howe Technologies first gained notoriety in 2001, with the development of the world’s fastest tank, the RIPSAW. Successful demonstrations soon followed, which eventually allowed the Howes, at the age of 31, to be named among the youngest in history to ever receive a multi-million dollar military contract from the USA. Soon after, in 2010, Howe & Howe received a Guinness World Record for developing the world’s smallest armored vehicle, the Badger. By the time the Howes were 36, they had one world record, multiple patents pending for their product developments, as well as military contracts. The Howes also had their own reality television show on a major US network. In 2010, they completed the Thermite, Fire Fighting Unmanned Ground Vehicle. In 2012, the Howes founded “Outdoors Again,” a nonprofit 501c3 organization that holds outdoor events and social activities for those who require the use of a wheelchair.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 23 August 2011

Carlo Alberto Avizzano

851

Abstract

Details

Industrial Robot: An International Journal, vol. 38 no. 5
Type: Research Article
ISSN: 0143-991X

Content available
Article
Publication date: 1 October 2004

Jon Rigelsford

72

Abstract

Details

Industrial Robot: An International Journal, vol. 31 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 August 2020

Rameez Khan, Fahad Mumtaz Malik, Abid Raza and Naveed Mazhar

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control…

Abstract

Purpose

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control, guidance and navigation for the researchers who wish to study in this field.

Design/methodology/approach

Most of the contemporary unmanned ground robot’s locomotion is based upon the wheels. For wheeled mobile robots (WMRs), one of the prominent and widely used driving schemes is skid steering. Because of mechanical simplicity and high maneuverability particularly in outdoor applications, SSWMR has an advantage over its counterparts. Different prospects of SSWMR have been discussed including its design, application, locomotion, control, navigation and guidance. The challenges pertaining to SSWMR have been pointed out in detail, which will seek the attention of the readers, who are interested to explore this area.

Findings

Relying on the recent literature on SSWMR, research gaps are identified that should be analyzed for the development of autonomous skid-steer wheeled robots.

Originality/value

An attempt to present a comprehensive review of recent advancements in the field of WMRs and providing references to the most intriguing studies.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 19 September 2022

Christian Fuchs

This essay asks: How can we understand and theorise the impacts of robots and Artificial Intelligence (AI) on everyday life based on Radical Humanism? How can Lefebvre's ideas be…

Abstract

This essay asks: How can we understand and theorise the impacts of robots and Artificial Intelligence (AI) on everyday life based on Radical Humanism? How can Lefebvre's ideas be used to reveal the ideological character of contemporary accounts of the impacts of robots and AI on society? It engages with rather unknown works of the Radical Humanist Henri Lefebvre on the sociology and philosophy of technology such as Vers le cybernanthrope (Towards the Cybernanthrope). Foundations of a Lefebvrian, dialectical, Radical Humanist approach to the sociology and philosophy of technology are presented. This essay introduces Lefebvre's notion of the cybernanthrope and sets it in relation to robots and AI in contemporary society. Based on Lefebvre's critique of the cybernanthrope, this chapter develops foundations of the ideology critique of robots and AI in digital capitalism. It discusses examples of technological deterministic and social constructivist thought in the context of robotics, AI, and cyborgs and argues for an alternative, Lefebvrian, dialectical approach. This essay situates Humanism in the context of computing, AI and robotics. The chapter advances a Lefebvrian Radical Humanism by engaging in analyses of AI and robots in Post-humanism, Transhumanism, techno-deterministic approaches, social construction of technology approaches, techno-optimism, techno-pessimism, acceleratonism, the mass unemployment hypothesis and Spike Jonze's movie Her. This chapter shows that the major lesson we can learn from the Radical Humanist sociology of technology and Henri Lefebvre's works on technology is that Radical Humanism helps creating and sustaining technologies for the many, not the few. This insight remains of high relevance in the age of digital capitalism, smart robots and AI.

Content available
Article
Publication date: 1 March 2003

63

Abstract

Details

Sensor Review, vol. 23 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 17 September 2020

Unlike the historical robots, the contemporary and futuristic ‘working’ robots within organisations are capable of taking decisions without human intervention. This chapter

Abstract

Unlike the historical robots, the contemporary and futuristic ‘working’ robots within organisations are capable of taking decisions without human intervention. This chapter reviews the technical evolution of robots across history with the necessary evolution of operational procedures regarding laws and ethical standards. The objective of this review is to have a futuristic holistic insight into the new generation of robots that are invading our working environment within organisations. Out of the very wide perspective of robotics research field, this chapter only discusses the ‘working’ robots (excluding domestic, social, and warfare robots) in organisations along with its ethical and legal associated issues. To achieve this objective, the recent ‘working robot’ definition and associated expected ethics and laws, termed in this chapter as ‘Ten Commandments’ would be necessary for the utilisation of robotics before releasing ‘intelligent’ robots in the workplace environment. The proposed ‘Ten Commandments’ can be utilised by robot manufacturer to embed ‘machine testimony’ to their products. Providing that such ‘robot ethics’ built as part of the algorithmic structure of robots, a useful innovation like robot–manager is also identified in the organisational environment which can have multiple benefits as discussed in this chapter.

1 – 10 of over 1000