Search results

1 – 10 of 73
Content available
Article
Publication date: 2 August 2011

1893

Abstract

Details

Assembly Automation, vol. 31 no. 3
Type: Research Article
ISSN: 0144-5154

Open Access
Article
Publication date: 28 November 2023

Silvia Massa, Maria Carmela Annosi, Lucia Marchegiani and Antonio Messeni Petruzzelli

This study aims to focus on a key unanswered question about how digitalization and the knowledge processes it enables affect firms’ strategies in the international arena.

3815

Abstract

Purpose

This study aims to focus on a key unanswered question about how digitalization and the knowledge processes it enables affect firms’ strategies in the international arena.

Design/methodology/approach

The authors conduct a systematic literature review of relevant theoretical and empirical studies covering over 20 years of research (from 2000 to 2023) and including 73 journal papers.

Findings

This review allows us to highlight a relationship between firms’ international strategies and the knowledge processes enabled by applying digital technologies. Specifically, the authors discuss the characteristics of patterns of knowledge flows and knowledge processes (their origin, the type of knowledge they carry on and their directionality) as determinants for the emergence of diverse international strategies embraced by single firms or by populations of firms within ecosystems, networks, global value chains or alliances.

Originality/value

Despite digital technologies constituting important antecedents and critical factors for the internationalization process, and international businesses in general, and operating cross borders implies the enactment of highly knowledge-intensive processes, current literature still fails to provide a holistic picture of how firms strategically use what they know and seek out what they do not know in the international environment, using the affordances of digital technologies.

Details

Journal of Knowledge Management, vol. 27 no. 11
Type: Research Article
ISSN: 1367-3270

Keywords

Open Access
Article
Publication date: 25 April 2022

Adetayo Olugbenga Onososen and Innocent Musonda

Rapid urbanisation and recent shock events have reiterated the need for resilient infrastructure, as seen in the pandemic. Yet, knowledge gaps in construction robotics and…

3844

Abstract

Purpose

Rapid urbanisation and recent shock events have reiterated the need for resilient infrastructure, as seen in the pandemic. Yet, knowledge gaps in construction robotics and human–robot teams (HRTs) research limit maximising these emerging technologies’ potentials. This paper aims to review the state of the art of research in this area to identify future research directions in HRTs able to aid the resilience and responsiveness of the architecture, engineering and construction (AEC) sector.

Design/methodology/approach

A total of 71 peer-reviewed journal articles centred on robotics and HRTs were reviewed through a quantitative approach using scientometric techniques using Gephi and VOSviewer. Research focus deductions were made through bibliometric analysis and co-occurrence analysis of reviewed publications.

Findings

This study revealed sparse and small research output in this area, indicating immense research potential. Existing clusters signifying the need for further studies are on automation in construction, human–robot teaming, safety in robotics and robotic designs. Key publication outlets and construction robotics contribution towards the built environment’s resilience are discussed.

Practical implications

The identified gaps in the thematic areas illustrate priorities for future research focus. It raises awareness on human factors in collaborative robots and potential design needs for construction resilience.

Originality/value

Rapid urbanisation and recent shock events have reiterated the need for resilient infrastructure, as seen in the pandemic. Yet, knowledge gaps in construction robotics and HRTs research limit maximising these emerging technologies’ potentials. This paper aims to review the state of the art of research in this area to identify future research directions in HRTs able to aid the resilience and responsiveness of the AEC sector.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 18 April 2023

Wenzhen Yang, Johan K. Crone, Claus R. Lønkjær, Macarena Mendez Ribo, Shuo Shan, Flavia Dalia Frumosu, Dimitrios Papageorgiou, Yu Liu, Lazaros Nalpantidis and Yang Zhang

This study aims to present a vision-guided robotic system design for application in vat photopolymerization additive manufacturing (AM), enabling vat photopolymerization AM hybrid…

Abstract

Purpose

This study aims to present a vision-guided robotic system design for application in vat photopolymerization additive manufacturing (AM), enabling vat photopolymerization AM hybrid with injection molding process.

Design/methodology/approach

In the system, a robot equipped with a camera and a custom-made gripper as well as driven by a visual servoing (VS) controller is expected to perceive objective, handle variation, connect multi-process steps in soft tooling process and realize automation of vat photopolymerization AM. Meanwhile, the vat photopolymerization AM printer is customized in both hardware and software to interact with the robotic system.

Findings

By ArUco marker-based vision-guided robotic system, the printing platform can be manipulated in arbitrary initial position quickly and robustly, which constitutes the first step in exploring automation of vat photopolymerization AM hybrid with soft tooling process.

Originality/value

The vision-guided robotic system monitors and controls vat photopolymerization AM process, which has potential for vat photopolymerization AM hybrid with other mass production methods, for instance, injection molding.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 15 February 2022

Md. Hazrat Ali, Gani Issayev, Essam Shehab and Shoaib Sarfraz

In recent years, 3D printing technologies have been widely used in the construction industry. 3D printing in construction is very attractive because of its capability of process…

3473

Abstract

Purpose

In recent years, 3D printing technologies have been widely used in the construction industry. 3D printing in construction is very attractive because of its capability of process automation and the possibility of saving labor, waste materials, construction time and hazardous procedures for humans. Significant researches were conducted to identify the performance of the materials, while some researches focused on the development of novel techniques and methods, such as building information modeling. This paper aims to provide a detailed overview of the state-of-the-art of currently used 3D printing technologies in the construction areas and global acceptance in its applications.

Design/methodology/approach

The working principle of additive manufacturing in construction engineering (CE) is presented in terms of structural design, materials used and theoretical background of the leading technologies that are used to construct buildings and structures as well as their distinctive features.

Findings

The trends of 3D printing processes in CE are very promising, as well as the development of novel materials, will gain further momentum. The findings also indicate that the digital twin (DT) in construction technology would bring the industry a step forward toward achieving the goal of Industry 5.0.

Originality/value

This review highlights the prospects of digital manufacturing and the DT in construction engineering. It also indicates the future research direction of 3D printing in various constriction sectors.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 May 2022

Gabriel Dämmer, Hartmut Bauer, Rüdiger Neumann and Zoltan Major

This study aims to investigate the suitability of a multi-step prototyping strategy for producing pneumatic rotary vane actuators (RVAs) for the development of lightweight robots…

1237

Abstract

Purpose

This study aims to investigate the suitability of a multi-step prototyping strategy for producing pneumatic rotary vane actuators (RVAs) for the development of lightweight robots and actuation systems.

Design/methodology/approach

RVAs typically have cast aluminum housings and injection-molded seals that consist of hard thermoplastic cores and soft elastomeric overmolds. Using a combination of additive manufacturing (AM), computer numerical control (CNC) machining and elastomer molding, a conventionally manufactured standard RVA was replicated. The standard housing design was modified, and polymeric replicas were obtained by selective laser sintering (SLS) or PolyJet (PJ) printing and subsequent CNC milling. Using laser-sintered molds, actuator seals were replicated by overmolding laser-sintered polyamide cores with silicone (SIL) and polyurethane (PU) elastomers. The replica RVAs were subjected to a series of leakage, friction and durability experiments.

Findings

The AM-based prototyping strategy described is suitable for producing functional and reliable RVAs for research and product development. In a representative durability experiment, the RVAs in this study endured between 40,000 and 1,000,000 load cycles. Frictional torques were around 0.5 Nm, which is 10% of the theoretical torque at 6 bar and comparable to that of the standard RVA. Models and parameters are provided for describing the velocity-dependent frictional torque. Leakage experiments at 10,000 load cycles and 6 bar differential pressure showed that PJ housings exhibit lower leakage values (6.8 L/min) than laser-sintered housings (15.2 L/min), and PU seals exhibit lower values (8.0 l/min) than SIL seals (14.0 L/min). Combining PU seals with PJ housings led to an initial leakage of 0.4 L/min, which increased to only 1.2 L/min after 10,000 load cycles. Overall, the PU material used was more difficult to process but also more abrasion- and tear-resistant than the SIL elastomer.

Research limitations/implications

More work is needed to understand individual cause–effect relationships between specific design features and system behavior.

Originality/value

To date, pneumatic RVAs have been manufactured by large-scale production technologies. The absence of suitable prototyping strategies has limited the available range to fixed sizes and has thus complicated the use of RVAs in research and product development. This paper proves that functional pneumatic RVAs can be produced by using more accessible manufacturing technologies and provides the tools for prototyping of application-specific RVAs.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 September 2022

Modupeola Dada, Patricia Popoola, Ntombi Mathe, Sisa Pityana and Samson Adeosun

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive

Abstract

Purpose

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive manufacturing on an A301 steel baseplate for aerospace applications. The purpose of this research is to investigate the electrical resistivity and oxidation behavior of the as-built copper (Cu)- and titanium (Ti)-based alloys and to understand the alloying effect, the HEAs core effects and the influence of laser parameters on the physical properties of the alloys.

Design/methodology/approach

The as-received AlCoCrFeNiCu and AlCoCrFeNiTi powders were used to fabricate HEA clads on an A301 steel baseplate preheated at 400°C using a 3 kW Rofin Sinar dY044 continuous-wave laser-deposition system fitted with a KUKA robotic arm. The deposits were sectioned using an electric cutting machine and prepared by standard metallographic methods to investigate the electrical and oxidation properties of the alloys.

Findings

The results showed that the laser power had the most influence on the physical properties of the alloys. The Ti-based alloy had better resistivity than the Cu-based alloy, whereas the Cu-based alloy had better oxidation residence than the Ti-based alloy which attributed to the compositional alloying effect (Cu, aluminum and nickel) and the orderliness of the lattice, which is significantly associated with the electron transportation; consequently, the more distorted the lattice, the easier the transportation of electrons and the better the properties of the HEAs.

Originality/value

It is evident from the studies that the composition of HEAs and the laser processing parameters are two significant factors that influence the physical properties of laser deposited HEAs for aerospace applications.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Abstract

Details

International Journal of Operations & Production Management, vol. 39 no. 6/7/8
Type: Research Article
ISSN: 0144-3577

Open Access
Article
Publication date: 13 May 2020

James I. Novak and Jennifer Loy

The COVID-19 pandemic significantly increased demand for medical and protective equipment by frontline health workers, as well as the general community, causing the supply chain…

Abstract

The COVID-19 pandemic significantly increased demand for medical and protective equipment by frontline health workers, as well as the general community, causing the supply chain to stretch beyond capacity, an issue further heightened by geographical and political lockdowns. Various 3D printing technologies were quickly utilised by businesses, institutions and individuals to manufacture a range of products on-demand, close to where they were needed. This study gathered data about 91 3D printed projects initiated prior to April 1, 2020, as the virus spread globally. It found that 60% of products were for personal protective equipment, of which 62% were 3D printed face shields. Fused filament fabrication was the most common 3D print technology used, and websites were the most popular means of centralising project information. The project data provides objective, quantitative insight balanced with qualitative critical review of the broad trends, opportunities and challenges that could be used by governments, health and medical bodies, manufacturing organisations and the 3D printing community to streamline the current response, as well as plan for future crises using a distributed, flexible manufacturing approach.

1 – 10 of 73