Search results

1 – 4 of 4
Open Access
Article
Publication date: 10 July 2019

Hoyon Hwang, Jaeyoung Cha and Jon Ahn

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft…

3747

Abstract

Purpose

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft design framework provides a simple method to design solar aircraft for users of all levels of experience.

Design/methodology/approach

This design framework consists of algorithms and user interfaces for the design of experiments, optimization and mission analysis that includes aerodynamics, performance, solar energy, weight and flight distances.

Findings

The proposed sizing method produces the optimal solar aircraft that yields the minimum weight and satisfies the constraints such as the power balance, the night time energy balance and the lift coefficient limit.

Research limitations/implications

The design conditions for the sizing process are given in terms of mission altitudes, flight dates, flight latitudes/longitudes and design factors for the aircraft configuration.

Practical implications

The framework environment is light and easily accessible as it is implemented using open programs without the use of any expensive commercial tools or in-house programs. In addition, this study presents a sizing method for solar aircraft as traditional sizing methods fail to reflect their unique features.

Social implications

Solar aircraft can be used in place of a satellite and introduce many advantages. The solar aircraft is much cheaper than the conventional satellite, which costs approximately $200-300m. It operates at a closer altitude to the ground and allows for a better visual inspection. It also provides greater flexibility of missions and covers a wider range of applications.

Originality/value

This study presents the implementation of a function that yields optimized flight performance under the given mission conditions, such as climb, cruise and descent for a solar aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 25 October 2021

Yun Bai, Saeed Babanajad and Zheyong Bian

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces…

Abstract

Purpose

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations. Managing a network of transportation infrastructure assets, especially when the number is large, is a multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation infrastructure asset management analytical framework to study the impacts of a few key parameters/factors on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and replacement decisions in a finite planning horizon.

Design/methodology/approach

The analytical framework is further developed through a series of model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in previous research. The proposed methodology can be adapted to different types of assets for solving general asset management and capital planning problems.

Findings

The experiments and case studies revealed several findings. First, the authors showed the importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user cost of a single facility will have significant impacts on the system cost and correlation between them also influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of funds to bridges weighing the trade-off between user and agency costs.

Originality/value

On the path forward to develop the next generation of bridge management systems methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic deterioration models into bridge MR&R capital planning and decision-making. The authors propose an optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but also considers the epistemic uncertainties and variances of the model parameters of Markovian transition probabilities due to data errors or modeling processes.

Open Access
Article
Publication date: 12 January 2024

Francisco Javier Blanco-Encomienda, Shuo Chen and David Molina-Muñoz

Due to the intense rivalry in the smartphone market, manufacturers of mobile phones are becoming increasingly interested in knowing the factors that influence consumers' purchase…

2091

Abstract

Purpose

Due to the intense rivalry in the smartphone market, manufacturers of mobile phones are becoming increasingly interested in knowing the factors that influence consumers' purchase intention. This paper aims to examine the effect of country-of-origin image, brand image and attitude towards the brand on the purchase intention of smartphone users.

Design/methodology/approach

An empirical study was performed based on the information gathered from smartphone users. The structural equation modeling (SEM) technique was applied to examine the hypotheses.

Findings

The authors found that brand image and attitude towards the brand significantly influence consumer purchase intention. Additionally, there is an indirect effect even when the nation of origin image does not directly influence the consumer's purchase intention. Indeed, brand image and attitude towards the brand act as a mediator between the country-of-origin image and purchase intention.

Originality/value

This study presents a conceptual model on the impact of country-of-origin image on the propensity of consumers to buy smartphones in a field where little research has been done. The investigation offers a consumer-focused analysis regarding the country-of-origin image. This suggests a significant shift from the current strategy, which is frequently centered on the viewpoint of the companies.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

Open Access
Article
Publication date: 21 March 2022

Maisam Abbasi and Liz Varga

The purpose of this research is to systematically review the properties of supply chains demonstrating that they are complex systems, and that the management of supply chains is…

2875

Abstract

Purpose

The purpose of this research is to systematically review the properties of supply chains demonstrating that they are complex systems, and that the management of supply chains is best achieved by steering rather than controlling these systems toward desired outcomes.

Design/methodology/approach

The research study was designed as both exploratory and explanatory. Data were collected from secondary sources using a comprehensive literature review process. In parallel with data collection, data were analyzed and synthesized.

Findings

The main finding is the introduction of an inductive framework for steering supply chains from a complex systems perspective by explaining why supply chains have properties of complex systems and how to deal with their complexity while steering them toward desired outcomes. Complexity properties are summarized in four inter-dependent categories: Structural, Dynamic, Behavioral and Decision making, which together enable the assessment of supply chains as complex systems. Furthermore, five mechanisms emerged for dealing with the complexity of supply chains: classification, modeling, measurement, relational analysis and handling.

Originality/value

Recognizing that supply chains are complex systems allows for a better grasp of the effect of positive feedback on change and transformation, and also interactions leading to dynamic equilibria, nonlinearity and the role of inter-organizational learning, as well as emerging capabilities, and existing trade-offs and paradoxical tensions in decision-making. It recognizes changing dynamics and the co-evolution of supply chain phenomena in different scales and contexts.

Details

European Journal of Management Studies, vol. 27 no. 1
Type: Research Article
ISSN: 2183-4172

Keywords

1 – 4 of 4