Search results

1 – 10 of 652
Article
Publication date: 23 March 2012

Sandeep Singh, Kamlesh Kulkarni, Ramesh Pandey and Harpreet Singh

The purpose of this paper is to present elastic buckling behaviour of simply supported and clamped thin rectangular isotropic plates having central circular cutouts subjected to…

Abstract

Purpose

The purpose of this paper is to present elastic buckling behaviour of simply supported and clamped thin rectangular isotropic plates having central circular cutouts subjected to uniaxial partial edge compression. Analysis is carried out for four different kinds of partial edge compression and it is extended to study the effect of aspect ratio of plate on buckling load.

Design/methodology/approach

A finite element method technique is used in the current work to solve the buckling problem of plate using eight node quadrilateral element and plate kinematics based on first order shear deformation theory. Results obtained from finite element analysis are first validated for isotropic square plates, without cutouts, subjected to uniaxial partial edge compression with some earlier published literature.

Findings

From the current work it is concluded that the buckling strength of square plates is highly influenced by partial edge compression, as compared to plate subjected to uniform edge compression; but with increase in aspect ratio, influence of partial edge compression on plate buckling load decreases.

Originality/value

This paper usefully shows how partial edge compression of plates affects the buckling strength of plate having circular cutouts. Generally, simply supported plates subjected uniaxial partial edge compression of Type I and Type III are found to be stronger than plates subjected to partial edge compression Type II and Type IV, respectively.

Details

Journal of Engineering, Design and Technology, vol. 10 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Content available
Article
Publication date: 23 March 2012

Theo C. Haupt

145

Abstract

Details

Journal of Engineering, Design and Technology, vol. 10 no. 1
Type: Research Article
ISSN: 1726-0531

Article
Publication date: 2 February 2022

Ali Mohammed Ali, Manar Hamid Jasim and Bashar Dheyaa Hussein Al-Kasob

The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the…

Abstract

Purpose

The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the first-order shear deformation beam theory. Also, a simulation of impact process is carried out by ABAQUS finite element (FE) code.

Design/methodology/approach

In theoretical formulation, first strains and stresses are obtained, then kinetic and potential energies are written, and using a combination of Ritz and Lagrange methods, a set of system of motion equations in the form of mass, stiffness and force matrices is obtained. Finally, the motion equations are solved using Runge–Kutta fourth order method.

Findings

The von Mises stress contours at the impact point and contact force from the ABAQUS simulation are illustrated and it is revealed that the theoretical solution is in good agreement with the FE code. The effect of changes in projectile speed, projectile diameter and projectile mass on the results is carefully examined with particular attention to evaluate histories of the impact force and beam recess. One of the important results is that changes in projectile speed have a greater effect on the results than changes in projectile diameter, and also changes in projectile mass have the least effect.

Originality/value

This paper presents a combination of methods of energy, Ritz and Lagrange and also FE code to simulate the problem of sandwich beams under low velocity impact.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3543

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 March 2009

Hadi Grailu, Mojtaba Lotfizad and Hadi Sadoghi‐Yazdi

The purpose of this paper is to propose a lossy/lossless binary textual image compression method based on an improved pattern matching (PM) technique.

Abstract

Purpose

The purpose of this paper is to propose a lossy/lossless binary textual image compression method based on an improved pattern matching (PM) technique.

Design/methodology/approach

In the Farsi/Arabic script, contrary to the printed Latin script, letters usually attach together and produce various patterns. Hence, some patterns are fully or partially subsets of some others. Two new ideas are proposed here. First, the number of library prototypes is reduced by detecting and then removing the fully or partially similar prototypes. Second, a new effective pattern encoding scheme is proposed for all types of patterns including text and graphics. The new encoding scheme has two operation modes of chain coding and soft PM, depending on the ratio of the pattern area to its chain code effective length. In order to encode the number sequences, the authors have modified the multi‐symbol QM‐coder. The proposed method has three levels for the lossy compression. Each level, in its turn, further increases the compression ratio. The first level includes applying some processing in the chain code domain such as omission of small patterns and holes, omission of inner holes of characters, and smoothing the boundaries of the patterns. The second level includes the selective pixel reversal technique, and the third level includes using the proposed method of prioritizing the residual patterns for encoding, with respect to their degree of compactness.

Findings

Experimental results show that the compression performance of the proposed method is considerably better than that of the best existing binary textual image compression methods as high as 1.6‐3 times in the lossy case and 1.3‐2.4 times in the lossless case at 300 dpi. The maximum compression ratios are achieved for Farsi and Arabic textual images.

Research limitations/implications

Only the binary printed typeset textual images are considered.

Practical implications

The proposed method has a high‐compression ratio for archiving and storage applications.

Originality/value

To the authors' best knowledge, the existing textual image compression methods or standards have not so far exploited the property of full or partial similarity of prototypes for increasing the compression ratio for any scripts. Also, the idea of combining the boundary description methods with the run‐length and arithmetic coding techniques has not so far been used.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 6 June 2023

Vladimir Kobelev

In the current manuscript, the authors examine the Belleville spring with the variable thickness. The thickness is assumed to be variable along the meridional and parallel…

Abstract

Purpose

In the current manuscript, the authors examine the Belleville spring with the variable thickness. The thickness is assumed to be variable along the meridional and parallel coordinates of conical coordinate system. The calculation of the Belleville springs includes the cases of the free gliding edges and the edges on cylindric curbs, which constrain the radial movement. The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations.

Design/methodology/approach

In the current manuscript, the authors examine the Belleville spring with the variable thickness. The calculation of the Belleville springs investigates the free gliding edges and the edges on cylindric curbs with the constrained radial movement. The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations.

Findings

The developed equations demonstrate that the shift of the inversion point to the inside edge does not influence the bending of the cone. On the contrary, the character of the extensional deformation (circumferential strain) of the middle surface alternates significantly. The extension of the middle surface of free gliding spring occurs outside the inversion. The middle surface of the free gliding spring squeezes inside the inversion point. Contrarily, the complete middle surface of the disk spring on the cylindric curb extends. This behavior influences considerably the function of the spring.

Research limitations/implications

A slotted disk spring consists of two segments: a disk segment and a number of lever arm segments. Currently, the calculation of slotted disk spring is based on the SAE formula (SAE, 1996). This formula is limited to a straight slotted disk spring with freely gliding inner and outer edges.

Practical implications

The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations. The developed method is applicable for disk springs with radially constrained edges. The vertical displacements of a disk spring result from an axial load uniformly distributed on inner and outer edges. The method could be directly applied for calculation of slotted disk springs.

Originality/value

The nonlinear governing equations for the of Belleville spring centres were derived. The equations describe the deformation and stresses of thin and moderately thick washers. The variation method is applicable for the disc springs with free gliding and rigidly constrained edges. The developed method is applicable for Belleville spring with radially constrained edges. The vertical displacements of a disc spring result from an axial load uniformly distributed on inner and outer edges.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 July 2020

Azra Nazir, Roohie Naaz Mir and Shaima Qureshi

The trend of “Deep Learning for Internet of Things (IoT)” has gained fresh momentum with enormous upcoming applications employing these models as their processing engine and Cloud…

274

Abstract

Purpose

The trend of “Deep Learning for Internet of Things (IoT)” has gained fresh momentum with enormous upcoming applications employing these models as their processing engine and Cloud as their resource giant. But this picture leads to underutilization of ever-increasing device pool of IoT that has already passed 15 billion mark in 2015. Thus, it is high time to explore a different approach to tackle this issue, keeping in view the characteristics and needs of the two fields. Processing at the Edge can boost applications with real-time deadlines while complementing security.

Design/methodology/approach

This review paper contributes towards three cardinal directions of research in the field of DL for IoT. The first section covers the categories of IoT devices and how Fog can aid in overcoming the underutilization of millions of devices, forming the realm of the things for IoT. The second direction handles the issue of immense computational requirements of DL models by uncovering specific compression techniques. An appropriate combination of these techniques, including regularization, quantization, and pruning, can aid in building an effective compression pipeline for establishing DL models for IoT use-cases. The third direction incorporates both these views and introduces a novel approach of parallelization for setting up a distributed systems view of DL for IoT.

Findings

DL models are growing deeper with every passing year. Well-coordinated distributed execution of such models using Fog displays a promising future for the IoT application realm. It is realized that a vertically partitioned compressed deep model can handle the trade-off between size, accuracy, communication overhead, bandwidth utilization, and latency but at the expense of an additionally considerable memory footprint. To reduce the memory budget, we propose to exploit Hashed Nets as potentially favorable candidates for distributed frameworks. However, the critical point between accuracy and size for such models needs further investigation.

Originality/value

To the best of our knowledge, no study has explored the inherent parallelism in deep neural network architectures for their efficient distribution over the Edge-Fog continuum. Besides covering techniques and frameworks that have tried to bring inference to the Edge, the review uncovers significant issues and possible future directions for endorsing deep models as processing engines for real-time IoT. The study is directed to both researchers and industrialists to take on various applications to the Edge for better user experience.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 20 October 2023

Yao Chao, Tao Liu and Liming Shen

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Abstract

Purpose

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Design/methodology/approach

A universal indentation calculation model is derived based on the system theory, and the deformation characteristics of each component are analyzed by the finite element (FE) model of a partial air-spring mattress under the initial air pressure of 0.01–0.025 MPa. Finally, the calculation error of the model is verified.

Findings

The results indicate that the indentation calculation model could describe the stain of a mattress given the load and the constitutive model of each element. In addition, the FE model of a partial air-spring mattress can be used for further simulation analysis with an error of 1.47–3.42 mm. Furthermore, the deformation of the series system is mainly contributed by the air spring and the components directly in contact with it, while the top component is mainly deflection deformation. In addition, the error of the calculation model is 2.17–5.59 mm on the condition of 0.01–0.025 MPa, satisfying the engineering application. Finally, the supine spinal alignment is successfully extracted from the mattress indentation.

Research limitations/implications

The limitation of this study is that it needs to verify the practicality of the indentation calculation model for the Bonnier spiral spring mattress. The main feature of the Bonnier spring mattress is that all springs are connected, so the mattress deflection and neighborhood effect are more significant than those of the air-spring mattress. Therefore, the applicability of the model needs to be tested. Moreover, it is worth further research to reduce the deformation error of each component.

Practical implications

As part of the series of studies on the intelligent air-spring mattress, the indentation-based evaluation method of spinal alignment in sleep postures will be studied for hardness and intelligent regulation based on this study.

Social implications

The results of this research are ultimately used for the intelligent adjustment of air-spring mattresses, which automatically adjusts the hardness according to the user's sleep postures and spinal alignment, thus maintaining optimal spinal biomechanics. The successful application of this result could improve the sleep health of the general public.

Originality/value

Based on the series system theory, an indentation calculation model for mattresses with arbitrary structure is proposed, overcoming the dependence of parameters on materials and their combinations when fitting the Burgers model. Further, the spinal alignment in supine posture is extracted from the indentation, laying a theoretical foundation for further recognition and adjustment of the spinal alignment of the intelligent mattress.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Victor Rizov

The purpose of this paper is to perform a theoretical analysis of delamination fracture behaviour of the Crack Lap Shear layered beam configuration taking into account the…

Abstract

Purpose

The purpose of this paper is to perform a theoretical analysis of delamination fracture behaviour of the Crack Lap Shear layered beam configuration taking into account the material non-linearity. A delamination crack located arbitrarily along the beam height was considered in this study.

Design/methodology/approach

The beam mechanical behaviour was described by using the Ramberg-Osgood stress-strain relation. Fracture was analysed by applying the J-integral approach. Besides by using symmetric Ramberg-Osgood stress-strain curve, fracture was investigated also by Ramberg-Osgood stress-strain curve that is not symmetric with respect to tension and compression. The J-integral solutions were verified by performing elastic-plastic analyses of the strain energy release rate.

Findings

The effects of crack location and material properties on the non-linear fracture behaviour were evaluated. It was found that the material non-linearity leads to increase of the J-integral values. Therefore, the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members composed by layered materials. The analytical solutions derived are very useful for parametric investigations of delamination fracture with considering the material non-linearity. The results obtained can be applied for optimisation of the beam structure with respect to fracture performance.

Originality/value

The present study contributes for the understanding of delamination fracture in layered beams that exhibit non-linear material behaviour.

Details

International Journal of Structural Integrity, vol. 8 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 652