Search results

1 – 10 of over 2000
Article
Publication date: 5 September 2023

Ebenezer Nana Banyin Harrison and Wi-Suk Kwon

This study aims to explore how brands use brand personification techniques in real-time marketing on social media, particularly Twitter, and examine how these techniques impact…

Abstract

Purpose

This study aims to explore how brands use brand personification techniques in real-time marketing on social media, particularly Twitter, and examine how these techniques impact consumer engagement, moderated by brand-event congruence levels.

Design/methodology/approach

Data included 464 tweets posted by 95 brands around three large events in 2019. The types of brand personification techniques and the level of brand-event congruence applied by the tweets were content-analyzed, and regression analyses were conducted to examine their linkages to consumer engagement metrics.

Findings

Results confirmed the use of diverse personification techniques in brands’ real-time marketing tweets as in the previous literature. The study also revealed a new personification technique, tacit expression, not reported in previous literature. The study also showed that the overall effectiveness of multimedia-based (vs caption-based) personification techniques in increasing consumer engagement on social media was greater, but their relative effectiveness varied depending on whether or not the event was functionally congruent with the brand.

Practical implications

The findings offer valuable suggestions to brand managers regarding prioritizing brand personification techniques and aligning brands’ social media marketing with real-time events to maximize the effectiveness of real-time marketing in boosting consumer engagement.

Originality/value

This research offers insights into the dynamic effects of different brand personification techniques in the new context of real-time marketing, extending the scope of literature on brand personification and anthropomorphism. The revelation of a new type of brand personification not captured in the extant literature is also a significant contribution.

Details

Journal of Product & Brand Management, vol. 32 no. 8
Type: Research Article
ISSN: 1061-0421

Keywords

Article
Publication date: 28 December 2022

Marcos Paulo Valadares de Oliveira and Robert Handfield

The study objective was to understand what components of organizational culture and capability combined with analytic skillsets are needed to allow organizations to exploit…

Abstract

Purpose

The study objective was to understand what components of organizational culture and capability combined with analytic skillsets are needed to allow organizations to exploit real-time analytic technologies to create supply chain performance improvements.

Design/methodology/approach

The authors relied on information processing theory to support a hypothesized model, which is empirically tested using an ordinary least squares equation model, and survey data from a sample of 208 supply chain executives across multiple industries.

Findings

The authors found strong support for the concept that real-time analytics will require specialized analytical skills for the managers who use them in their daily work, as well as an analytics-focused organizational culture that promotes data visibility and fact-based decision-making.

Practical implications

Based on the study model, the authors found that a cultural bias to embrace analytics and a strong background in statistical fluency can produce decision-makers who can make sense of a sea of data, and derive significant supply chain performance improvements.

Originality/value

The research was initiated through five workshops and presentations with supply chain executives leading real-time analytics initiatives within their organizations, which were then mapped onto survey items and tested. The authors complement our findings with direct observations from managers that lend unique insights into the field.

Details

The International Journal of Logistics Management, vol. 34 no. 6
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 30 March 2023

Rafael Diaz and Ali Ardalan

Motivated by recent research indicating that the operational performance of an enterprise can be enhanced by building a supporting data-driven environment in which to operate…

Abstract

Purpose

Motivated by recent research indicating that the operational performance of an enterprise can be enhanced by building a supporting data-driven environment in which to operate, this paper presents a simulation framework that enables an examination of the effects of applying smart manufacturing principles to conventional production systems, intending to transition to digital platforms.

Design/methodology/approach

To investigate the extent to which conventional production systems can be transformed into novel data-driven environments, the well-known constant work-in-process (CONWIP) production systems and considered production sequencing assignments in flowshops were studied. As a result, a novel data-driven priority heuristic, Net-CONWIP was designed and studied, based on the ability to collect real-time information about customer demand and work-in-process inventory, which was applied as part of a distributed and decentralised production sequencing analysis. Application of heuristics like the Net-CONWIP is only possible through the ability to collect and use real-time data offered by a data-driven system. A four-stage application framework to assist practitioners in applying the proposed model was created.

Findings

To assess the robustness of the Net-CONWIP heuristic under the simultaneous effects of different levels of demand, its different levels of variability and the presence of bottlenecks, the performance of Net-CONWIP with conventional CONWIP systems that use first come, first served priority rule was compared. The results show that the Net-CONWIP priority rule significantly reduced customer wait time in all cases relative to FCFS.

Originality/value

Previous research suggests there is considerable value in creating data-driven environments. This study provides a simulation framework that guides the construction of a digital transformation environment. The suggested framework facilitates the inclusion and analysis of relevant smart manufacturing principles in production systems and enables the design and testing of new heuristics that employ real-time data to improve operational performance. An approach that can guide the structuring of data-driven environments in production systems is currently lacking. This paper bridges this gap by proposing a framework to facilitate the design of digital transformation activities, explore their impact on production systems and improve their operational performance.

Details

Industrial Management & Data Systems, vol. 123 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 1 November 2022

Slawomir Wycislak

Visibility is the need of the hour for each organization involved in the supply chain, and scholars have made few previous efforts to understand patterns driving visibility in…

Abstract

Purpose

Visibility is the need of the hour for each organization involved in the supply chain, and scholars have made few previous efforts to understand patterns driving visibility in transportation platforms. However, many companies have not been able to achieve sufficient levels of practical implementation across the supply chain. Therefore, this study focuses on exploring, why the real-time visibility transportation platforms fail to operationalize.

Design/methodology/approach

This study utilizes action research as a methodology for pragmatism to understand supply chain professionals' viewpoint regarding the operationalization of real-time visibility. The research addresses a complex transportation network of a fast-moving consumer goods company. Wherein, both a greater need for visibility and improvements are also more challenging.

Findings

Tensions amongst complementors, the platform owner, and the Control Tower of a focal company explain the different impacts of freight forwarders and own fleet carriers on shipment compliance. Integrating subcontractors is a cost-intensive practice for complementors that increases asymmetry and reduces co-created value. The willingness of freight forwarders to exert control contributes to tension competition versus collaboration.

Research limitations/implications

The model identifies the dynamics that explain how managers can navigate the tension over time by controlling contradictory loops driving shipment compliance. Findings can help managers develop plans, conduct pilots, and collaborate to unlock value from real-time visibility. The research findings can be informative for the European Union bodies and help work out a policy that reduces the asymmetry of benefits and contribute to the more sustainable development of digital industrial platforms.

Originality/value

The contribution lies in (1) providing a study of the factors affecting achieving real-time visibility, (2) distinguishing complementors (3) identifying tensions amongst complementors and platform owner as critical for successful platform deployment, (4) conceptualizing a pattern of behavior emerging amongst the platform partners and (5) outlining avenues for future research.

Details

The International Journal of Logistics Management, vol. 34 no. 5
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 9 October 2023

Mingyao Sun and Tianhua Zhang

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing…

Abstract

Purpose

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing process is always accompanied by order splitting and merging; besides, in each stage of the process, there are always multiple machine groups that have different production capabilities and capacities. This paper studies a multi-agent based scheduling architecture for the radio frequency identification (RFID)-enabled semiconductor back-end shopfloor, which integrates not only manufacturing resources but also human factors.

Design/methodology/approach

The architecture includes a task management (TM) agent, a staff instruction (SI) agent, a task scheduling (TS) agent, an information management center (IMC), machine group (MG) agent and a production monitoring (PM) agent. Then, based on the architecture, the authors developed a scheduling method consisting of capability & capacity planning and machine configuration modules in the TS agent.

Findings

The authors used greedy policy to assign each order to the appropriate machine groups based on the real-time utilization ration of each MG in the capability & capacity (C&C) planning module, and used a partial swarm optimization (PSO) algorithm to schedule each splitting job to the identified machine based on the C&C planning results. At last, we conducted a case study to demonstrate the proposed multi-agent based real-time production scheduling models and methods.

Originality/value

This paper proposes a multi-agent based real-time scheduling framework for semiconductor back-end industry. A C&C planning and a machine configuration algorithm are developed, respectively. The paper provides a feasible solution for semiconductor back-end manufacturing process to realize real-time scheduling.

Details

IIMBG Journal of Sustainable Business and Innovation, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8500

Keywords

Article
Publication date: 19 December 2022

Keshan (Sara) Wei

In the present world of constant connectivity, the barrage system, as a system of real-time dynamic comments coupled with video content, has become a popular interactive system…

Abstract

Purpose

In the present world of constant connectivity, the barrage system, as a system of real-time dynamic comments coupled with video content, has become a popular interactive system technology for video sharing platforms. This study investigates how barrage system fluctuation characteristics, namely, barrage fluctuation amplitude and frequency, impact user interaction.

Design/methodology/approach

The research model was estimated with a fixed-effects regression applied to a longitudinal panel dataset collected from one of the most popular video sharing platforms in China (Bilibili.com).

Findings

Barrage fluctuation frequency has positive effects on users' real-time (synchronous) barrage interaction and the traditional (asynchronous) comment interaction. Barrage fluctuation amplitude has a positive effect on users' real-time (synchronous) barrage interaction but a negative effect on traditional (asynchronous) comment interaction. In addition, the interaction effects of the barrage fluctuation frequency and the barrage fluctuation amplitude on user interaction show adverse effects.

Originality/value

The results revealed the impact of different barrage fluctuation characteristics on different forms of interaction and provide important theoretical contributions and managerial implications in terms of user interaction on video sharing platforms.

Details

Journal of Research in Interactive Marketing, vol. 17 no. 4
Type: Research Article
ISSN: 2040-7122

Keywords

Article
Publication date: 15 July 2022

Hongming Gao, Hongwei Liu, Weizhen Lin and Chunfeng Chen

Purchase conversion prediction aims to improve user experience and convert visitors into real buyers to drive sales of firms; however, the total conversion rate is low, especially…

Abstract

Purpose

Purchase conversion prediction aims to improve user experience and convert visitors into real buyers to drive sales of firms; however, the total conversion rate is low, especially for e-retailers. To date, little is known about how e-retailers can scientifically detect users' intents within a purchase conversion funnel during their ongoing sessions and strategically optimize real-time marketing tactics corresponding to dynamic intent states. This study mainly aims to detect a real-time state of the conversion funnel based on graph theory, which refers to a five-class classification problem in the overt real-time choice decisions (RTCDs)—click, tag-to-wishlist, add-to-cart, remove-from-cart and purchase—during an ongoing session.

Design/methodology/approach

The authors propose a novel graph-theoretic framework to detect different states of the conversion funnel by identifying a user's unobserved mindset revealed from their navigation process graph, namely clickstream graph. First, the raw clickstream data are identified into individual sessions based on a 30-min time-out heuristic approach. Then, the authors convert each session into a sequence of temporal item-level clickstream graphs and conduct a temporal graph feature engineering according to the basic, single-, dyadic- and triadic-node and global characteristics. Furthermore, the synthetic minority oversampling technique is adopted to address with the problem of classifying imbalanced data. Finally, the authors train and test the proposed approach with several popular artificial intelligence algorithms.

Findings

The graph-theoretic approach validates that users' latent intent states within the conversion funnel can be interpreted as time-varying natures of their online graph footprints. In particular, the experimental results indicate that the graph-theoretic feature-oriented models achieve a substantial improvement of over 27% in line with the macro-average and micro-average area under the precision-recall curve, as compared to the conventional ones. In addition, the top five informative graph features for RTCDs are found to be Transitivity, Edge, Node, Degree and Reciprocity. In view of interpretability, the basic, single-, dyadic- and triadic-node and global characteristics of clickstream graphs have their specific advantages.

Practical implications

The findings suggest that the temporal graph-theoretic approach can form an efficient and powerful AI-based real-time intent detecting decision-support system. Different levels of graph features have their specific interpretability on RTCDs from the perspectives of consumer behavior and psychology, which provides a theoretical basis for the design of computer information systems and the optimization of the ongoing session intervention or recommendation in e-commerce.

Originality/value

To the best of the authors' knowledge, this is the first study to apply clickstream graphs and real-time decision choices in conversion prediction and detection. Most studies have only meditated on a binary classification problem, while this study applies a graph-theoretic approach in a five-class classification problem. In addition, this study constructs temporal item-level graphs to represent the original structure of clickstream session data based on graph theory. The time-varying characteristics of the proposed approach enhance the performance of purchase conversion detection during an ongoing session.

Details

Kybernetes, vol. 52 no. 11
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 January 2023

Frank Ato Ghansah and Weisheng Lu

Digital twins provide enormous opportunities for smart buildings. However, an up-to-date intellectual landscape to understand and identify the major opportunities of digital twins…

Abstract

Purpose

Digital twins provide enormous opportunities for smart buildings. However, an up-to-date intellectual landscape to understand and identify the major opportunities of digital twins for smart buildings is still not enough. This study, therefore, performs an up-to-date comprehensive literature review to identify the major opportunities of digital twins for smart buildings.

Design/methodology/approach

Scientometric and content analysis are utilised to comprehensively evaluate the intellectual landscape of the general knowledge of digital twins for smart buildings.

Findings

The study uncovered 24 opportunities that were further categorised into four major opportunities: efficient building performance (smart “building” environment), efficient building process (smart construction site environment), information efficiency and effective user interactions. The study further identified the limitations of the existing studies and made recommendations for future research in the methodology adopted and the research domain. Five research domains were considered for future research, namely “real-time data acquisition, processing and storage”, “security and privacy issues”, “standardised and domain modelling”, “collaboration between the building industry and the digital twin developers” and “skilled workforce to enable a seamless transition from theory to practice”.

Practical implications

All stakeholders, including practitioners, policymakers and researchers in the field of “architecture, engineering, construction and operations” (AECO), may benefit from the findings of this study by gaining an in-depth understanding of the opportunities of digital twins and their implementation in smart buildings in the AECO industry. The limitations and the possible research directions may serve as guidelines for streamlining the practical adoption and implementation of digital twins for smart buildings.

Originality/value

This study adopted scientometric and content analysis to comprehensively assess the intellectual landscape of relevant literature and identify four major opportunities of digital twins for smart building, to which scholars have given limited attention. Finally, a research direction framework is presented to address the identified limitations of existing studies and help envision the ideal state of digital twins for smart buildings.

Details

Smart and Sustainable Built Environment, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 24 October 2022

Priyanka Chawla, Rutuja Hasurkar, Chaithanya Reddy Bogadi, Naga Sindhu Korlapati, Rajasree Rajendran, Sindu Ravichandran, Sai Chaitanya Tolem and Jerry Zeyu Gao

The study aims to propose an intelligent real-time traffic model to address the traffic congestion problem. The proposed model assists the urban population in their everyday lives…

Abstract

Purpose

The study aims to propose an intelligent real-time traffic model to address the traffic congestion problem. The proposed model assists the urban population in their everyday lives by assessing the probability of road accidents and accurate traffic information prediction. It also helps in reducing overall carbon dioxide emissions in the environment and assists the urban population in their everyday lives by increasing overall transportation quality.

Design/methodology/approach

This study offered a real-time traffic model based on the analysis of numerous sensor data. Real-time traffic prediction systems can identify and visualize current traffic conditions on a particular lane. The proposed model incorporated data from road sensors as well as a variety of other sources. It is difficult to capture and process large amounts of sensor data in real time. Sensor data is consumed by streaming analytics platforms that use big data technologies, which is then processed using a range of deep learning and machine learning techniques.

Findings

The study provided in this paper would fill a gap in the data analytics sector by delivering a more accurate and trustworthy model that uses internet of things sensor data and other data sources. This method can also assist organizations such as transit agencies and public safety departments in making strategic decisions by incorporating it into their platforms.

Research limitations/implications

The model has a big flaw in that it makes predictions for the period following January 2020 that are not particularly accurate. This, however, is not a flaw in the model; rather, it is a flaw in Covid-19, the global epidemic. The global pandemic has impacted the traffic scenario, resulting in erratic data for the period after February 2020. However, once the circumstance returns to normal, the authors are confident in their model’s ability to produce accurate forecasts.

Practical implications

To help users choose when to go, this study intended to pinpoint the causes of traffic congestion on the highways in the Bay Area as well as forecast real-time traffic speeds. To determine the best attributes that influence traffic speed in this study, the authors obtained data from the Caltrans performance measurement system (PeMS), reviewed it and used multiple models. The authors developed a model that can forecast traffic speed while accounting for outside variables like weather and incident data, with decent accuracy and generalizability. To assist users in determining traffic congestion at a certain location on a specific day, the forecast method uses a graphical user interface. This user interface has been designed to be readily expanded in the future as the project’s scope and usefulness increase. The authors’ Web-based traffic speed prediction platform is useful for both municipal planners and individual travellers. The authors were able to get excellent results by using five years of data (2015–2019) to train the models and forecast outcomes for 2020 data. The authors’ algorithm produced highly accurate predictions when tested using data from January 2020. The benefits of this model include accurate traffic speed forecasts for California’s four main freeways (Freeway 101, I-680, 880 and 280) for a specific place on a certain date. The scalable model performs better than the vast majority of earlier models created by other scholars in the field. The government would benefit from better planning and execution of new transportation projects if this programme were to be extended across the entire state of California. This initiative could be expanded to include the full state of California, assisting the government in better planning and implementing new transportation projects.

Social implications

To estimate traffic congestion, the proposed model takes into account a variety of data sources, including weather and incident data. According to traffic congestion statistics, “bottlenecks” account for 40% of traffic congestion, “traffic incidents” account for 25% and “work zones” account for 10% (Traffic Congestion Statistics). As a result, incident data must be considered for analysis. The study uses traffic, weather and event data from the previous five years to estimate traffic congestion in any given area. As a result, the results predicted by the proposed model would be more accurate, and commuters who need to schedule ahead of time for work would benefit greatly.

Originality/value

The proposed work allows the user to choose the optimum time and mode of transportation for them. The underlying idea behind this model is that if a car spends more time on the road, it will cause traffic congestion. The proposed system encourages users to arrive at their location in a short period of time. Congestion is an indicator that public transportation needs to be expanded. The optimum route is compared to other kinds of public transit using this methodology (Greenfield, 2014). If the commute time is comparable to that of private car transportation during peak hours, consumers should take public transportation.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 March 2023

Preeti Godabole and Girish Bhole

The main purpose of the paper is timing analysis of mixed critical applications on the multicore system to identify an efficient task scheduling mechanism to achieve three main…

Abstract

Purpose

The main purpose of the paper is timing analysis of mixed critical applications on the multicore system to identify an efficient task scheduling mechanism to achieve three main objectives improving schedulability, achieving reliability and minimizing the number of cores used. The rise in transient faults in embedded systems due to the use of low-cost processors has led to the use of fault-tolerant scheduling and mapping techniques.

Design/methodology/approach

The paper opted for a simulation-based study. The simulation of mixed critical applications, like air traffic control systems and synthetic workloads, is carried out using a litmus-real time testbed on an Ubuntu machine. The heuristic algorithms for task allocation based on utilization factors and task criticalities are proposed for partitioned approaches with multiple objectives.

Findings

Both partitioned earliest deadline first (EDF) with the utilization-based heuristic and EDF-virtual deadline (VD) with a criticality-based heuristic for allocation works well, as it schedules the air traffic system with a 98% success ratio (SR) using only three processor cores with transient faults being handled by the active backup of the tasks. With synthetic task loads, the proposed criticality-based heuristic works well with EDF-VD, as the SR is 94%. The validation of the proposed heuristic is done with a global and partitioned approach of scheduling, considering active backups to make the system reliable. There is an improvement in SR by 11% as compared to the global approach and a 17% improvement in comparison with the partitioned fixed-priority approach with only three processor cores being used.

Research limitations/implications

The simulations of mixed critical tasks are carried out on a real-time kernel based on Linux and are generalizable in Linux-based environments.

Practical implications

The rise in transient faults in embedded systems due to the use of low-cost processors has led to the use of fault-tolerant scheduling and mapping techniques.

Originality/value

This paper fulfills an identified need to have multi-objective task scheduling in a mixed critical system. The timing analysis helps to identify performance risks and assess alternative architectures used to achieve reliability in terms of transient faults.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Access

Year

Last 12 months (2849)

Content type

Article (2849)
1 – 10 of over 2000