Search results

1 – 10 of 277
Article
Publication date: 18 September 2024

Felipe Terra Mohad, Leonardo de Carvalho Gomes, Guilherme da Luz Tortorella and Fernando Henrique Lermen

Total productive maintenance consists of strategies and procedures that aim to guarantee the entire functioning of machines in a production process so that production is not…

Abstract

Purpose

Total productive maintenance consists of strategies and procedures that aim to guarantee the entire functioning of machines in a production process so that production is not interrupted and no loss of quality in the final product occurs. Planned maintenance is one of the eight pillars of total productive maintenance, a set of tools considered essential to ensure equipment reliability and availability, reduce unplanned stoppage and increase productivity. This study aims to analyze the influence of statistical reliability on the performance of such a pillar.

Design/methodology/approach

In this study, we utilized a multi-method approach to rigorously examine the impact of statistical reliability on the planned maintenance pillar within total productive maintenance. Our methodology combined a detailed statistical analysis of maintenance data with advanced reliability modeling, specifically employing Weibull distribution to analyze failure patterns. Additionally, we integrated qualitative insights gathered through semi-structured interviews with the maintenance team, enhancing the depth of our analysis. The case study, conducted in a fertilizer granulation plant, focused on a critical failure in the granulator pillow block bearing, providing a comprehensive perspective on the practical application of statistical reliability within total productive maintenance; and not presupposing statistical reliability is the solution over more effective methods for the case.

Findings

Our findings reveal that the integration of statistical reliability within the planned maintenance pillar significantly enhances predictive maintenance capabilities, leading to more accurate forecasts of equipment failure modes. The Weibull analysis of the granulator pillow block bearing indicated a mean time between failures of 191.3 days, providing support for optimizing maintenance schedules. Moreover, the qualitative insights from the maintenance team highlighted the operational benefits of our approach, such as improved resource allocation and the need for specialized training. These results demonstrate the practical impact of statistical reliability in preventing unplanned downtimes and informing strategic decisions in maintenance planning, thereby emphasizing the importance of your work in the field.

Originality/value

In terms of the originality and practicality of this study, we emphasize the significant findings that underscore the positive influence of using statistical reliability in conjunction with the planned maintenance pillar. This approach can be instrumental in designing and enhancing component preventive maintenance plans. Furthermore, it can effectively manage equipment failure modes and monitor their useful life, providing valuable insights for professionals in total productive maintenance.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 17 September 2024

Mohammad Yaghtin and Youness Javid

The purpose of this research is to address the complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup…

Abstract

Purpose

The purpose of this research is to address the complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance. The primary goal is to minimize total tardiness, earliness and total completion times simultaneously. This study aims to provide effective solution methods, including a Mixed-Integer Programming (MIP) model, an Epsilon-constraint method and the Nondominated Sorting Genetic Algorithm (NSGA-II), to offer valuable insights into solving large-sized instances of this challenging problem.

Design/methodology/approach

This study addresses a multiobjective unrelated parallel machine scheduling problem with sequence-dependent setup times and periodic machine maintenance activities. An MIP model is introduced to formulate the problem, and an Epsilon-constraint method is applied for a solution. To handle the NP-hard nature of the problem for larger instances, an NSGA-II is developed. The research involves the creation of 45 problem instances for computational experiments, which evaluate the performance of the algorithms in terms of proposed measures.

Findings

The research findings demonstrate the effectiveness of the proposed solution approaches for the multiobjective unrelated parallel machine scheduling problem. Computational experiments on 45 generated problem instances reveal that the NSGA-II algorithm outperforms the Epsilon-constraint method, particularly for larger instances. The algorithms successfully minimize total tardiness, earliness and total completion times, showcasing their practical applicability and efficiency in handling real-world scheduling scenarios.

Originality/value

This study contributes original value by addressing a complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance activities. The introduction of an MIP model, the application of the Epsilon-constraint method and the development of the NSGA-II algorithm offer innovative approaches to solving this NP-hard problem. The research provides valuable insights into efficient scheduling methods applicable in various industries, enhancing decision-making processes and operational efficiency.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 22 August 2024

Binghai Zhou and Mingda Wen

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the…

Abstract

Purpose

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the periphery of the line, proves insufficient for mixed-model assembly lines (MMAL). Consequently, this paper aims to introduce a material distribution scheduling problem considering the shared storage area (MDSPSSA). To address the inherent trade-off requirement of achieving both just-in-time efficiency and energy savings, a mathematical model is developed with the bi-objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

A nondominated and multipopulation multiobjective grasshopper optimization algorithm (NM-MOGOA) is proposed to address the medium-to-large-scale problem associated with MDSPSSA. This algorithm combines elements from the grasshopper optimization algorithm and the nondominated sorting genetic algorithm-II. The multipopulation and coevolutionary strategy, chaotic mapping and two further optimization operators are used to enhance the overall solution quality.

Findings

Finally, the algorithm performance is evaluated by comparing NM-MOGOA with multi-objective grey wolf optimizer, multiobjective equilibrium optimizer and multi-objective atomic orbital search. The experimental findings substantiate the efficacy of NM-MOGOA, demonstrating its promise as a robust solution when confronted with the challenges posed by the MDSPSSA in MMALs.

Originality/value

The material distribution system devised in this paper takes into account the establishment of shared material storage areas between adjacent workstations. It permits the undifferentiated storage of various part types in fixed BOL areas. Concurrently, the innovative NM-MOGOA algorithm serves as the core of the system, supporting the formulation of scheduling plans.

Book part
Publication date: 13 September 2024

Elvira Buijs, Elena Maggioni and Gianpaolo Carrafiello

Artificial intelligence (AI) applications are increasingly used for day-to-day operations in healthcare. Each has a relatively limited scope or task, and several find application…

Abstract

Artificial intelligence (AI) applications are increasingly used for day-to-day operations in healthcare. Each has a relatively limited scope or task, and several find application in managerial and organizational processes. More and more, AI and machine learning (ML) devices have received US FDA approval in the last decade. This chapter covers the main AI applications in healthcare, with a focus on organizational AI solutions (administrative AI), the main AI developers, their investment and real-world data and case studies in healthcare and other sectors. AI can be applied in resource management and procurement, resource allocation, clinical case management, staff work shift scheduling and handling of emergencies. AI applications are becoming ubiquitous in hospital (e.g. emergency room and operating theatre) and outpatient settings (e.g. ambulatory care and dentistry clinics). Their implementation is expected to bring direct benefits for patient care and satisfaction. This chapter gives a broad definition of AI in healthcare settings, with a focus on administrative applications and their use in case study data.

Open Access
Article
Publication date: 9 February 2024

Armando Calabrese, Antonio D'Uffizi, Nathan Levialdi Ghiron, Luca Berloco, Elaheh Pourabbas and Nathan Proudlove

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Abstract

Purpose

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Design/methodology/approach

The methodology entails the integration of service design (SD) and action research (AR) methodologies, characterized by iterative phases that systematically alternate between action and reflective processes, fostering cycles of change and learning. Within this framework, stakeholders are engaged through semi-structured interviews, while the existing and envisioned processes are delineated and represented using BPMN 2.0. These methodological steps emphasize the development of an autonomous, patient-centric web application alongside the implementation of an adaptable and patient-oriented scheduling system. Also, business processes simulation is employed to measure key performance indicators of processes and test for potential improvements. This method is implemented in the context of the CP addressing transient loss of consciousness (TLOC), within a publicly funded hospital setting.

Findings

The methodology integrating SD and AR enables the detection of pivotal bottlenecks within diagnostic CPs and proposes optimal corrective measures to ensure uninterrupted patient care, all the while advancing the digitalization of diagnostic CP management. This study contributes to theoretical discussions by emphasizing the criticality of process optimization, the transformative potential of digitalization in healthcare and the paramount importance of user-centric design principles, and offers valuable insights into healthcare management implications.

Originality/value

The study’s relevance lies in its ability to enhance healthcare practices without necessitating disruptive and resource-intensive process overhauls. This pragmatic approach aligns with the imperative for healthcare organizations to improve their operations efficiently and cost-effectively, making the study’s findings relevant.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 16 September 2024

Thomas De Lombaert, Kris Braekers, René De Koster and Katrien Ramaekers

Warehouses are under pressure to operate as efficiently as possible. In pursuit of attaining high efficiency in the order picking process, the warehouse manager must take several…

Abstract

Purpose

Warehouses are under pressure to operate as efficiently as possible. In pursuit of attaining high efficiency in the order picking process, the warehouse manager must take several planning decisions, typically supported by a central planning system. However, highly centralised work erodes the autonomy of warehouse workers, interfering with worker well-being and productivity. This study holistically explores the impact of a work system with more decision autonomy for order pickers.

Design/methodology/approach

We conduct a unique field experiment in a real-world warehouse and use a within-subjects design to compare two work systems, one with worker autonomy and one without. 18 permanent employees participate in our study, in which we measure both psychosocial and physical well-being as well as productivity. Post-experimental interviews are conducted to delve deeper into the observed effects.

Findings

Our study illustrates that involving order pickers in operational decisions can benefit their job satisfaction and motivation without compromising productivity. Although we fail to find significance at the conventional level (α = 0.05), we do find marginally significant effects of our treatment on physical well-being aspects. Furthermore, our intervention invoked a highly positive user experience.

Practical implications

We show that slightly loosening tight process control results in organisational and individual benefits without endangering smooth operational flows. The warehouse in this paper acknowledged this and decided to permanently work according to this philosophy.

Originality/value

This study is the first to holistically explore the effects of a participatory work setting in a real-world warehouse.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 16 September 2024

Erica R. Hamilton and Kelly C. Margot

School–university partnerships are important in teacher education to ensure PK-12 preservice teachers gain teaching experience prior to becoming teachers of record. Drawing on…

Abstract

Purpose

School–university partnerships are important in teacher education to ensure PK-12 preservice teachers gain teaching experience prior to becoming teachers of record. Drawing on Ball and Cohen’s (1999) concept of “practice-based teacher education,” this three-year qualitative study examines the results of an intentionally reciprocal school–university partnership centered on a practice-based learning, field-based course. The following question guided this research: Having designed and facilitated a school–university partnership centered on reciprocity, what factors contributed to and/or took away from this commitment?

Design/methodology/approach

The current study examined three data sources, namely: (1) seven semi-structured focus group interviews with a teacher educator, sixth-grade teachers (n = 4) and a principal; (2) eight question/answer sessions between preservice teachers and partnering secondary teachers and (3)one focus group between the two authors. Data were analyzed using reflexive thematic analysis.

Findings

This study’s findings highlight the reciprocal nature of the school–university partnership, showcasing the positive outcomes and challenges faced by stakeholders. Clear communication and ongoing dialogue were identified as key elements to establishing and maintaining a reciprocal relationship. Additionally, emphasis on shared learning experiences between partners were found valuable and important to maintaining benefit to all partners. Relationship development also remained an important and positive outcome of this partnership. Additionally, there were challenges related to time, and schedule constraints were evident in the partnership. Moreover, ongoing reflection and a willingness to adjust and change based on experiences and lessons learned ensured participants recognized the importance of ongoing iteration and calibration to address challenges and enhance the partnership.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalizability.

Originality/value

The paper includes implications for the development of other school–university partnerships that prioritize reciprocity, highlighting an often assumed, but not always examined, component necessary to the success of school–university partnerships.

Details

School-University Partnerships, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1935-7125

Keywords

Open Access
Article
Publication date: 31 May 2022

Kari-Pekka Tampio and Harri Haapasalo

The purpose of this paper is to identify the areas and logic of integration of different stakeholders using different methods and to analyse their applicability and challenges in…

1304

Abstract

Purpose

The purpose of this paper is to identify the areas and logic of integration of different stakeholders using different methods and to analyse their applicability and challenges in practical projects. The main aim is to describe how these different methods impact value creation.

Design/methodology/approach

Action design research was carried out in a large hospital construction project where the first author acted as an “involved researcher” and the second author acted as an “outside researcher”. Two workshops were organised to evaluate the direct and indirect challenges and benefits of the applied four methods and to explain how different methods enable value creation.

Findings

All the studied methods provide good results in terms of usability and commitment to the aims of the project, thus delivering the direct benefits expected. Process, people and tools logic works well in this case project when applying the methods properly. Significant evidence was provided on secondary deliverables of the methods, and all analysed methods had a significant impact in the area of leading people, clarifying what “focus on people” means and how it is enabled.

Practical implications

Focus on people can be achieved through different operative methods if applied in the right way. It is necessary to select the most suitable methods based on all the direct and indirect deliverables.

Originality/value

This case project offered a platform to analyse integration methods in a real-life project using the collaborative contract method. The authors were able to participate in the analysis by taking action from the very beginning of the project in terms of training, learning, continuous development and coaching of these methods and evaluating the applicability.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 19 September 2024

Mohammad Azim Eirgash and Vedat Toğan

Most of the existing time-cost-quality-environmental impact trade-off (TCQET) analysis models have focused on solving a simple project representation without taking typical…

Abstract

Purpose

Most of the existing time-cost-quality-environmental impact trade-off (TCQET) analysis models have focused on solving a simple project representation without taking typical activity and project characteristics into account. This study aims to present a novel approach called the “hybrid opposition learning-based Aquila Optimizer” (HOLAO) for optimizing TCQET decisions in generalized construction projects.

Design/methodology/approach

In this paper, a HOLAO algorithm is designed, incorporating the quasi-opposition-based learning (QOBL) and quasi-reflection-based learning (QRBL) strategies in the initial population and generation jumping phases, respectively. The crowded distance rank (CDR) mechanism is utilized to rank the optimal Pareto-front solutions to assist decision-makers (DMs) in achieving a single compromise solution.

Findings

The efficacy of the proposed methodology is evaluated by examining TCQET problems, involving 69 and 290 activities, respectively. Results indicate that the HOLAO provides competitive solutions for TCQET problems in construction projects. It is observed that the algorithm surpasses multiple objective social group optimization (MOSGO), plain Aquila Optimization (AO), QRBL and QOBL algorithms in terms of both number of function evaluations (NFE) and hypervolume (HV) indicator.

Originality/value

This paper introduces a novel concept called hybrid opposition-based learning (HOL), which incorporates two opposition strategies: QOBL as an explorative opposition and QRBL as an exploitative opposition. Achieving an effective balance between exploration and exploitation is crucial for the success of any algorithm. To this end, QOBL and QRBL are developed to ensure a proper equilibrium between the exploration and exploitation phases of the basic AO algorithm. The third contribution is to provide TCQET resource utilizations (construction plans) to evaluate the impact of these resources on the construction project performance.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 29 May 2024

Mohanad Rezeq, Tarik Aouam and Frederik Gailly

Authorities have set up numerous security checkpoints during times of armed conflict to control the flow of commercial and humanitarian trucks into and out of areas of conflict…

Abstract

Purpose

Authorities have set up numerous security checkpoints during times of armed conflict to control the flow of commercial and humanitarian trucks into and out of areas of conflict. These security checkpoints have become highly utilized because of the complex security procedures and increased truck traffic, which significantly slow the delivery of relief aid. This paper aims to improve the process at security checkpoints by redesigning the current process to reduce processing time and relieve congestion at checkpoint entrance gates.

Design/methodology/approach

A decision-support tool (clearing function distribution model [CFDM]) is used to minimize the effects of security checkpoint congestion on the entire humanitarian supply network using a hybrid simulation-optimization approach. By using a business process simulation, the current and reengineered processes are both simulated, and the simulation output was used to estimate the clearing function (capacity as a function of the workload). For both the AS-IS and TO-BE models, key performance indicators such as distribution costs, backordering and process cycle time were used to compare the results of the CFDM tool. For this, the Kerem Abu Salem security checkpoint south of Gaza was used as a case study.

Findings

The comparison results demonstrate that the CFDM tool performs better when the output of the TO-BE clearing function is used.

Originality/value

The efforts will contribute to improving the planning of any humanitarian network experiencing congestion at security checkpoints by minimizing the impact of congestion on the delivery lead time of relief aid to the final destination.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 4
Type: Research Article
ISSN: 2042-6747

Keywords

1 – 10 of 277