Search results

1 – 10 of 21
Article
Publication date: 24 January 2023

Xiangyu Wang, Pei He, Qinglong Zhou, Qingyuan Zhou, Manlang Cheng, Yangting Sun, Yiming Jiang, Laizhu Jiang and Jin Li

The purpose of this study is to investigate the intergranular corrosion (IGC) susceptibility of a nitrogen-containing austenitic stainless steel QN2109. The intergranular…

Abstract

Purpose

The purpose of this study is to investigate the intergranular corrosion (IGC) susceptibility of a nitrogen-containing austenitic stainless steel QN2109. The intergranular corrosion (IGC) susceptibility of a nitrogen-containing austenitic stainless steel QN2109 was investigated.

Design/methodology/approach

The double-loop electrochemical potentiodynamic reactivation (DL-EPR) tests were carried out. Scanning electron microscopy and atomic force microscopy were used to characterize the microstructure.

Findings

The optimized test condition for QN2109 was 1 M H2SO4 + 0.01 M NH4SCN at 40°C. The nose temperature of the temperature–time–sensitization (TTS) curve of QN2109 plot was approximately 750°C. Moreover, the IGC susceptibility started to appear at approximately 120 min. The Cr-depletion zone of QN2109 was generated by the formation of M23C6 rather than by the addition of nitrogen. The depth–width ratio of the grain boundaries after the DL-EPR tests decreased as the aging temperature increased. The degree of Cr depletion and size of the Cr-depletion zone at the grain boundary were reflected by the degree of sensitization and depth–width ratio, respectively.

Originality/value

The optimized test condition for DL-EPR tests of a nitrogen-containing austenitic stainless steel QN2109 was investigated. The TTS curve of QN2109 was first plotted to avoid IGC failure. The morphology of the Cr-depletion zone was reflected by the depth–width ratio.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 2020

Qingchao Sun, Qingyuan Lin, Bin Yang, Xianlian Zhang and Lintao Wang

Bolted joints are the most common type of mechanical connections, and improving the anti-loosening performance of bolts for the reliable performance of mechanical and building…

Abstract

Purpose

Bolted joints are the most common type of mechanical connections, and improving the anti-loosening performance of bolts for the reliable performance of mechanical and building structures is highly significant.

Design/methodology/approach

Because of the lack of sufficient theoretical basis for the evaluation and design of anti-loosening bolts, a quantitative evaluation model exhibiting the following two evaluation criteria for anti-loosening bolts is introduced: bolt rotation angular acceleration criterion and critical transverse load criterion. Based on the relationship among bolt tension, transverse load and bolt rotation angular acceleration, a critical transverse load calculation model is put forward, and the mechanism by which the critical transverse load increases with the increase of bolt tension is revealed.

Findings

Based on the above model, a new type of anti-loosening bolt is designed, which generates additional bolt tension when the transverse load increases, and then improves the critical transverse load of the bolt. The effectiveness of the new type of anti-loosening bolt is verified by theoretical calculations and experiments.

Originality/value

The proposed model and method set a preliminary theoretical foundation for the evaluation of bolt anti-loosening performance and the design of a new anti-loosening bolt.

Details

Assembly Automation, vol. 40 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 13 December 2023

Zhenyu Ma, Yupeng Zhang, Xuguang An, Jing Zhang, Qingquan Kong, Hui Wang, Weitang Yao and Qingyuan Wang

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial…

Abstract

Purpose

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial reference basis for the development of high-performance carbide reinforced FeCrAl alloys with good mechanical and corrosion properties in the future.

Design/methodology/approach

Nano ZrC reinforced FeCrAl alloys were prepared by mechanical alloying and spark plasma sintering. Phases composition, tensile fractography, corrosion morphology and chemical composition of nano ZrC reinforced FeCrAl alloys were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Microhardness and tensile properties of nano ZrC reinforced FeCrAl alloys were investigated by mechanical testing machine and Vickers hardness tester. Electrochemical corrosion properties of nano ZrC reinforced FeCrAl alloys were investigated by electrochemical workstation in 3.5 wt.% NaCl solution.

Findings

The results showed that addition of nano ZrC can effectively improve the mechanical and corrosion properties. However, excessive nano ZrC could decrease the mechanical properties and reduce the corrosion resistance. In all the FeCrAl alloys, FeCrAl–0.6 wt.% ZrC alloy exhibits the optimum mechanical properties with an ultimate tensile strength, elongation and hardness of 990.7 MPa, 24.1% and 335.8 HV1, respectively, and FeCrAl–0.2 wt.% ZrC alloy has a lower corrosion potential (−0.179 V) and corrosion current density (2.099 µA/cm2) and larger pitting potential (0.497 V) than other FeCrAl–ZrC alloys, showing a better corrosion resistance.

Originality/value

Adding proper nano ZrC particles can effectively improve the mechanical and corrosion properties, while the excessive nano ZrC is harmful to the mechanical and corrosion properties of FeCrAl alloys, which provides an instruction to develop high-performance FeCrAl cladding materials.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 January 2022

Kai Tan, Victor Postel, Yujia Liu, Dongtong Yang, Sen Tang, Chong Wang and Qingyuan Wang

Mechanical issues related to the information and growth of small cracks are considered to play a major role in very high cycle fatigue (VHCF) for metallic materials. Further…

Abstract

Purpose

Mechanical issues related to the information and growth of small cracks are considered to play a major role in very high cycle fatigue (VHCF) for metallic materials. Further efforts on better understanding in early stage of a crack are beneficial to estimating and preventing catastrophic damage for a long period service.

Design/methodology/approach

Dependent on the ultrasonic loading system, a novel method of in situ photomicroscope is established to study the crack behaviors in VHCF regime.

Findings

This in situ photomicroscope method provides advantages in combination with fatigue damage monitoring at high magnification, a large number of cycles, and efficiency. Visional investigation with attached image proceeding code proves that the method has high resolution on both size and time, which permits reliable accuracy on small crack growth rate. It is observed that the crack propagation trends slower in the overall small crack stage down to the level of 10–11 m/cycle. Strain analysis relays on a real-time recording which is applied by using digital image correlation. Infrared camera recording indicates the method is also suitable for thermodynamic study while growth of damage.

Originality/value

Benefiting from this method, it is more convenient and efficient to study the short crack propagation in VHCF regime.

Details

International Journal of Structural Integrity, vol. 13 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 June 2023

Yuming Liu, Yong Zhao, Qingyuan Lin, Sheng Liu, Ende Ge and Wei Wang

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations…

Abstract

Purpose

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations. Furthermore, the accuracy of the method would be verified by comparing it with the other conventional methods for calculating the optimal assembly pose.

Design/methodology/approach

First, the surface morphology of the parts with manufacturing deviations would be modeled to obtain the skin model shapes that can characterize the specific geometric features of the part. The model can provide the basis for the subsequent contact deformation analysis. Second, the simulated non-nominal components are discretized into point cloud data, and the spatial position of the feature points is corrected. Furthermore, the evaluation index to measure the assembly quality has been established, which integrates the contact deformations and the spatial relationship of the non-nominal parts’ key feature points. Third, the improved particle swarm optimization (PSO) algorithm combined with the finite element method is applied to the process of solving the optimal pose of the assembly, and further deformation calculations are conducted based on interference detection. Finally, the feasibility of the optimal pose prediction method is verified by a case.

Findings

The proposed method has been well suited to solve the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the effectiveness of the method with an example of the shaft-hole assembly.

Research limitations/implications

The method proposed in this paper has been well suited to the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the method with an example of the shaft-hole assembly.

Originality/value

The different surface morphology influenced by manufacturing deviations will lead to the various contact behaviors of the mating surfaces. The assembly problem for the components with complex geometry is usually accompanied by deformation due to the loading during the contact process, which may further affect the accuracy of the assembly. Traditional approaches often use worst-case methods such as tolerance offsets to analyze and optimize the assembly pose. In this paper, it is able to characterize the specific parts in detail by introducing the skin model shapes represented with the point cloud data. The dynamic changes in the parts' contact during the fitting process are also considered. Using the PSO method that takes into account the contact deformations improve the accuracy by 60.7% over the original method that uses geometric alignment alone. Moreover, it can optimize the range control of the contact to the maximum extent to prevent excessive deformations.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 1 November 2022

Lianhua Liu, Aili Xie and Shiqi Lyu

This paper aims to clarify the spatial connection characteristics and organization mode of logistics economy of 21 cities in Guangdong Province under the background of the…

Abstract

Purpose

This paper aims to clarify the spatial connection characteristics and organization mode of logistics economy of 21 cities in Guangdong Province under the background of the integrated development of Guangdong, Hong Kong and Macao Bay area, and explore the spatial development characteristics and influencing factors of logistics economy in Guangdong Province.

Design/methodology/approach

This paper constructs the development level model of urban logistics economy in Guangdong Province from three aspects: demand level, supply level and support level, and uses the entropy weight method to measure the development level index of urban logistics economy in Guangdong Province. Then, the traffic accessibility index model is used to measure the traffic accessibility index between cities in Guangdong Province. Finally, using the social network analysis method, combined with the development level index of urban logistics economy in Guangdong Province and the urban traffic access index in Guangdong Province, this paper analyzes the spatial connection characteristics and influencing factors of logistics economy network in Guangdong Province.

Findings

There are regional differences in the development level of logistics economy in Guangdong Province; The overall network density of its logistics economic connection is large, but there is an imbalance in the network structure, and the core edge phenomenon is obvious; Logistics economic space presents the characteristics of double core development.

Research limitations/implications

Because the research object is the spatial connection characteristics of logistics economy in Guangdong Province, the research results may lack universality. Therefore, researchers are encouraged to put forward further tests.

Practical implications

By studying the spatial connection mode of logistics economy in 21 cities in Guangdong Province, China, this paper promotes the original methods and empirical contributions, and constructs the research framework of spatial relationship of logistics economy. This research framework is universal to a certain extent.

Social implications

This paper is conducive to promoting the integrated development of logistics economy in Guangdong Province and improving the balance of regional development of logistics economy.

Originality/value

Firstly, this study provides a new perspective to understand the spatial relationship and spatial spillover of logistics economy from relational data rather than attribute data. Secondly, This study enriched and broadened the research topic of spatial correlation of logistics economy. Thirdly, this research aims to promote the original methods and empirical contributions. Specifically, this study establishes a comprehensive research framework on the spatial network structure of logistics economy.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 35 no. 7
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 2 September 2021

Lei Fu, Hui Li, Li Lin, Qingyuan Wang, Qi Fan, Xinjie Huang, XiuLan Li, Sheng Lai and Lifei Chen

Most supersonic aircraft were manufactured using 2A70 aluminum alloy. The purpose of this paper is to study the corrosion mechanism and fatigue behavior of an aircraft in a…

Abstract

Purpose

Most supersonic aircraft were manufactured using 2A70 aluminum alloy. The purpose of this paper is to study the corrosion mechanism and fatigue behavior of an aircraft in a semi-industrial atmospheric corrosive environment, alternating effects of corrosion and fatigue were used to simulate the aircraft’s ground parking corrosion and air flight fatigue.

Design/methodology/approach

For this purpose, the aluminum alloy samples were subjected to pre-corrosion and alternating corrosion-fatigue experiments. The failure mechanisms of corrosion and corrosion fatigue were analyzed using microscopic characterization methods of electrochemical testing, X-ray diffraction and scanning electron microscopy. Miner’s linear cumulative damage rule was used to predict the fatigue life of aluminum alloy and to obtain its safe fatigue life.

Findings

The results showed that the corrosion damage caused by the corrosive environment was gradually connected by pitting pits to form denudation pits along grain boundaries. The deep excavation of chloride ions and the presence of intergranular copper-rich phases result in severe intergranular corrosion morphology. During cyclic loading, alternating hardening and softening occurred. The stress concentration caused by surface pitting pits and denudation pits initiated fatigue cracks at intergranular corrosion products. At the same time, the initiation of multiple fatigue crack sources was caused by the corrosion environment and the morphology of the transient fracture zone was also changed, but the crack propagation rate was not basically affected. The polarization curve and impedance analysis results showed that the corrosion rate increases first, decreases and then increases. Fatigue failure behavior was directly related to micro characteristics such as corrosion pits and microcracks.

Originality/value

In this research, alternating effects of corrosion and fatigue were used to simulate the aircraft’s ground parking corrosion and air flight fatigue. To study the corrosion mechanism and fatigue behavior of an aircraft in a semi-industrial atmospheric corrosive environment, the Miner’s linear cumulative damage rule was used to predict the fatigue life of aluminum alloy and to obtain its safe fatigue life.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 September 2023

Min Zhan, Yajun Dai, Chang Liu, Xiangyu Wang, Lang Li, Yongjie Liu, Chao He and Qingyuan Wang

The purpose of this paper is to determine (1) the relationship between microstructure and fatigue cracking behavior and (2) effect of rolling on the process of crack initiation…

Abstract

Purpose

The purpose of this paper is to determine (1) the relationship between microstructure and fatigue cracking behavior and (2) effect of rolling on the process of crack initiation and propagation in FeCrAl alloys.

Design/methodology/approach

The qualitative and quantitative fracture studies were performed using scanning electron microscopy and the non-contact optical measurement system (IFMG5).

Findings

The results show that the formation of facets, rough facets and parallel stripes in the crack initiation and early crack propagation zones are closely related to the sensitivity of crack behavior to the microstructure of the material. Besides, the rolling process has a significant influence on the small crack initiation and propagation behavior. Quantitative analysis demonstrates that the size of the stress intensity factor and plastic zone size in the rough zone is associated with the rolling process.

Originality/value

The findings of this study have the potential to enhance the understanding of the microstructural crack formation mechanisms in FeCrAl alloys and shed light on the impact of rolling on the long-term and ultra-long fatigue behavior of these alloys. This new knowledge is vital for improving manufacturing processes and ensuring the safety and reliability of FeCrAl alloys used in nuclear industry applications.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 March 2024

Qiuchen Zhao, Xue Li, Junchao Hu, Yuehui Jiang, Kun Yang and Qingyuan Wang

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under…

Abstract

Purpose

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under as-built conditions.

Design/methodology/approach

Constant amplitude and two-step variable amplitude fatigue tests were carried out using ultrasonic fatigue equipment. The fracture surface of the failure specimen was quantitatively analyzed by scanning electron microscope (SEM).

Findings

The results show that the competition of surface and interior crack initiation modes leads to a duplex S–N curve. Both manufacturing defects (such as the lack of fusion) and inclusions can act as initially fatal fatigue microcracks, and the fatigue sensitivity level decreases with the location, size and type of the maximum defects.

Originality/value

The research results play a certain role in understanding the ultra-high cycle fatigue behavior of additive manufacturing aluminum alloys. It can provide reference for improving the process parameters of SLM technology.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 November 2016

Junfei Chu, Jie Wu, Qingyuan Zhu and Jiasen Sun

Resource scheduling is the study of how to effectively measure, evaluate, analyze, and dispatch resources in order to meet the demands of corresponding tasks. Aiming at the…

Abstract

Purpose

Resource scheduling is the study of how to effectively measure, evaluate, analyze, and dispatch resources in order to meet the demands of corresponding tasks. Aiming at the problem of resource scheduling in the private cloud environment, the purpose of this paper is to propose a resource scheduling approach from an efficiency priority point of view.

Design/methodology/approach

To measure the computational efficiencies for the resource nodes in a private cloud environment, the data envelopment analysis (DEA) approach is incorporated and a suitable DEA model is proposed. Then, based on the efficiency scores calculated by the proposed DEA model for the resource nodes, the 0-1 programming technique is introduced to build a simple resource scheduling model.

Findings

The proposed DEA model not only has the ability of ranking all the decision-making units into different positions but also can handle non-discretionary inputs and undesirable outputs when evaluating the resource nodes. Furthermore, the resource scheduling model can generate for the calculation tasks an optimal resource scheduling scheme that has the highest total computational efficiency.

Research limitations/implications

The proposed method may also be used in studies of resource scheduling studies in the environments of public clouds and hybrid clouds.

Practical implications

The proposed approach can achieve the goal of resource scheduling in private cloud computing platforms by attaining the highest total computational efficiency, which is very significant in practice.

Originality/value

This paper uses an efficiency priority point of view to solve the problem of resource scheduling in private cloud environments.

Details

Kybernetes, vol. 45 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 21