Search results

1 – 10 of 378
Open Access
Article
Publication date: 28 July 2020

R. Shashikant and P. Chetankumar

Cardiac arrest is a severe heart anomaly that results in billions of annual casualties. Smoking is a specific hazard factor for cardiovascular pathology, including coronary heart…

2380

Abstract

Cardiac arrest is a severe heart anomaly that results in billions of annual casualties. Smoking is a specific hazard factor for cardiovascular pathology, including coronary heart disease, but data on smoking and heart death not earlier reviewed. The Heart Rate Variability (HRV) parameters used to predict cardiac arrest in smokers using machine learning technique in this paper. Machine learning is a method of computing experience based on automatic learning and enhances performances to increase prognosis. This study intends to compare the performance of logistical regression, decision tree, and random forest model to predict cardiac arrest in smokers. In this paper, a machine learning technique implemented on the dataset received from the data science research group MITU Skillogies Pune, India. To know the patient has a chance of cardiac arrest or not, developed three predictive models as 19 input feature of HRV indices and two output classes. These model evaluated based on their accuracy, precision, sensitivity, specificity, F1 score, and Area under the curve (AUC). The model of logistic regression has achieved an accuracy of 88.50%, precision of 83.11%, the sensitivity of 91.79%, the specificity of 86.03%, F1 score of 0.87, and AUC of 0.88. The decision tree model has arrived with an accuracy of 92.59%, precision of 97.29%, the sensitivity of 90.11%, the specificity of 97.38%, F1 score of 0.93, and AUC of 0.94. The model of the random forest has achieved an accuracy of 93.61%, precision of 94.59%, the sensitivity of 92.11%, the specificity of 95.03%, F1 score of 0.93 and AUC of 0.95. The random forest model achieved the best accuracy classification, followed by the decision tree, and logistic regression shows the lowest classification accuracy.

Details

Applied Computing and Informatics, vol. 19 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 5 November 2019

Anette Rantanen, Joni Salminen, Filip Ginter and Bernard J. Jansen

User-generated social media comments can be a useful source of information for understanding online corporate reputation. However, the manual classification of these comments is…

4394

Abstract

Purpose

User-generated social media comments can be a useful source of information for understanding online corporate reputation. However, the manual classification of these comments is challenging due to their high volume and unstructured nature. The purpose of this paper is to develop a classification framework and machine learning model to overcome these limitations.

Design/methodology/approach

The authors create a multi-dimensional classification framework for the online corporate reputation that includes six main dimensions synthesized from prior literature: quality, reliability, responsibility, successfulness, pleasantness and innovativeness. To evaluate the classification framework’s performance on real data, the authors retrieve 19,991 social media comments about two Finnish banks and use a convolutional neural network (CNN) to classify automatically the comments based on manually annotated training data.

Findings

After parameter optimization, the neural network achieves an accuracy between 52.7 and 65.2 percent on real-world data, which is reasonable given the high number of classes. The findings also indicate that prior work has not captured all the facets of online corporate reputation.

Practical implications

For practical purposes, the authors provide a comprehensive classification framework for online corporate reputation, which companies and organizations operating in various domains can use. Moreover, the authors demonstrate that using a limited amount of training data can yield a satisfactory multiclass classifier when using CNN.

Originality/value

This is the first attempt at automatically classifying online corporate reputation using an online-specific classification framework.

Details

Internet Research, vol. 30 no. 1
Type: Research Article
ISSN: 1066-2243

Keywords

Open Access
Article
Publication date: 12 December 2022

Weicheng Guo, Chongjun Wu, Xiankai Meng, Chao Luo and Zhijian Lin

Molecular dynamics is an emerging simulation technique in the field of machining in recent years. Many researchers have tried to simulate different processing methods of various…

Abstract

Purpose

Molecular dynamics is an emerging simulation technique in the field of machining in recent years. Many researchers have tried to simulate different processing methods of various materials with the theory of molecular dynamics (MD), and some preliminary conclusions have been obtained. However, the application of MD simulation is more limited compared with traditional finite element model (FEM) simulation technique due to the complex modeling approach and long computation time. Therefore, more studies on the MD simulations are required to provide a reliable theoretical basis for the nanoscale interpretation of grinding process. This study investigates the crystal structures, dislocations, force, temperature and subsurface damage (SSD) in the grinding of iron-nickel alloy using MD analysis.

Design/methodology/approach

In this study the simulation model is established on the basis of the workpiece and single cubic boron nitride (CBN) grit with embedded atom method and Morse potentials describing the forces and energies between different atoms. The effects of grinding parameters on the material microstructure are studied based on the simulation results.

Findings

When CBN grit goes through one of the grains, the arrangement of atoms within the grain will be disordered, but other grains will not be easily deformed due to the protection of the grain boundaries. Higher grinding speed and larger cutting depth can cause greater impact of grit on the atoms, and more body-centered cubic (BCC) structures will be destroyed. The dislocations will appear in grain boundaries due to the rearrangement of atoms in grinding. The increase of grinding speed results in the more transformation from BCC to amorphous structures.

Originality/value

This study is aimed to study the grinding of Fe-Ni alloy (maraging steel) with single grit through MD simulation method, and to reveal the microstructure evolution within the affected range of SSD layer in the workpiece. The simulation model of polycrystalline structure of Fe-Ni maraging steel and grinding process of single CBN grit is constructed based on the Voronoi algorithm. The atomic accumulation, transformation of crystal structures, evolution of dislocations as well as the generation of SSD are discussed according to the simulation results.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 4 July 2022

Rubina Romanello and Valerio Veglio

In the age of the Fourth Industrial Revolution, Industry 4.0 can increase the productivity and competitiveness of companies in the international marketplace. The purpose of this…

6945

Abstract

Purpose

In the age of the Fourth Industrial Revolution, Industry 4.0 can increase the productivity and competitiveness of companies in the international marketplace. The purpose of this article is to investigate the drivers for and outcomes of the adoption of Industry 4.0 technologies in the case of a food processing company located in Italy.

Design/methodology/approach

The present work adopted a case study approach by investigating an Italian food processing company to investigate the drivers, challenges and outcomes of Industry 4.0 adoption in the agri-food sector.

Findings

This research highlighted drivers and challenges related to the adoption of different Industry 4.0 technologies. Secondly, it underlined the impacts of Industry 4.0 in terms of firm performance, operations management, human resource management and strategy.

Originality/value

Industry 4.0 technologies remain underexplored from the strategic perspective in the agri-food sector. This article provides preliminary evidence on the digital transformation of food processing companies, with a focus on Industry 4.0. Practical implications for managers, CEOs and entrepreneurs are discussed.

Details

British Food Journal, vol. 124 no. 13
Type: Research Article
ISSN: 0007-070X

Keywords

Open Access
Article
Publication date: 12 July 2023

Alberto Cavazza, Francesca Dal Mas, Paola Paoloni and Martina Manzo

Artificial Intelligence (AI) is a growing technology impacting several business fields. The agricultural sector is facing several challenges, which may be supported by the use of…

3576

Abstract

Purpose

Artificial Intelligence (AI) is a growing technology impacting several business fields. The agricultural sector is facing several challenges, which may be supported by the use of such a new advanced technology. The aim of the paper is to map the state-of-the-art of AI applications in agriculture, their advantages, barriers, implications and the ability to lead to new business models, depicting a future research agenda.

Design/methodology/approach

A structured literature review has been conducted, and 37 contributions have been analyzed and coded using a detailed research framework.

Findings

Findings underline the multiple uses and advantages of AI in agriculture and the potential impacts for farmers and entrepreneurs, even from a sustainability perspective. Several applications and algorithms are being developed and tested, but many barriers arise, starting from the lack of understanding by farmers and the need for global investments. A collaboration between scholars and practitioners is advocated to share best practices and lead to practical solutions and policies. The promising topic of new business models is still under-investigated and deserves more attention from scholars and practitioners.

Originality/value

The paper reports the state-of-the-art of AI in agriculture and its impact on the development of new business models. Several new research avenues have been identified.

Open Access
Article
Publication date: 6 November 2017

Michael J. Ryan, Daniel R. Eyers, Andrew T. Potter, Laura Purvis and Jonathan Gosling

The purpose of this paper is to evaluate the existing scenarios for 3D printing (3DP) in order to identify the “white space” where future opportunities have not been proposed or…

10382

Abstract

Purpose

The purpose of this paper is to evaluate the existing scenarios for 3D printing (3DP) in order to identify the “white space” where future opportunities have not been proposed or developed to date. Based around aspects of order penetration points, geographical scope and type of manufacturing, these gaps are identified.

Design/methodology/approach

A structured literature review has been carried out on both academic and trade publications. As of the end of May 2016, this identified 128 relevant articles containing 201 future scenarios. Coding these against aspects of existing manufacturing and supply chain theory has led to the development of a framework to identify “white space” in the existing thinking.

Findings

The coding shows that existing future scenarios are particularly concentrated on job shop applications and pull-based supply chain processes, although there are fewer constraints on geographical scope. Five distinct areas of “white space” are proposed, reflecting various opportunities for future 3DP supply chain development.

Research limitations/implications

Being a structured literature review, there are potentially articles not identified through the search criteria used. The nature of the findings is also dependent upon the coding criteria selected. However, these are theoretically derived and reflect important aspect of strategic supply chain management.

Practical implications

Practitioners may wish to explore the development of business models within the “white space” areas.

Originality/value

Currently, existing future 3DP scenarios are scattered over a wide, multi-disciplinary literature base. By providing a consolidated view of these scenarios, it is possible to identify gaps in current thinking. These gaps are multi-disciplinary in nature and represent opportunities for both academics and practitioners to exploit.

Details

International Journal of Physical Distribution & Logistics Management, vol. 47 no. 10
Type: Research Article
ISSN: 0960-0035

Keywords

Open Access
Article
Publication date: 18 March 2022

Shengtao Lin and Zhengcai Zhao

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and…

Abstract

Purpose

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and clamping processes, disabling the nominal numerical control (NC) sculpting programs. To address this problem, a fast adaptive sculpting method of the complex surface is proposed.

Design/methodology/approach

The geometry of the blank surface is measured using on-machine measurement (OMM). The real blank surface is reconstructed using the non-uniform rational basis spline (NURBS) method. The angle-based flattening (ABF) algorithm is used to flatten the reconstructed blank surface. The dense points are extracted from the pattern on the image using the OpenCV library. Then, the dense points are quickly located on the complex surfaces to generate the tool paths.

Findings

By flattening the reconstructed surface and creating the mapping between the contour points and the planar mesh triangular patches, the tool paths can be regenerated to keep the contour of the pattern on the deformed thin-walled surface.

Originality/value

The proposed method can adjust the tool paths according to the deformation of the thin-walled part. The consistency of sculpting patterns is improved.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 22 May 2023

Peter G. Kelly, Benjamin H. Gallup and Joseph D. Roy-Mayhew

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on…

1124

Abstract

Purpose

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on a part have conflicting optimal orientations, the part is unavoidably compromised. This paper aims to demonstrate a strategy in which conflicting features can be functionally separated into “co-parts” which are individually aligned in an optimal orientation, selectively reinforced with continuous fiber, printed simultaneously and, finally, assembled into a composite part with substantially improved performance.

Design/methodology/approach

Several candidate parts were selected for co-part decomposition. They were printed as standard fused filament fabrication plastic parts, parts reinforced with continuous fiber in one plane and co-part assemblies both with and without continuous fiber reinforcement (CFR). All parts were loaded until failure. Additionally, parts representative of common suboptimally oriented features (“unit tests”) were similarly printed and tested.

Findings

CFR delivered substantial improvement over unreinforced plastic-only parts in both standard parts and co-part assemblies, as expected. Reinforced parts held up to 2.5x the ultimate load of equivalent plastic-only parts. The co-part strategy delivered even greater improvement, particularly when also reinforced with continuous fiber. Plastic-only co-part assemblies held up to 3.2x the ultimate load of equivalent plastic only parts. Continuous fiber reinforced co-part assemblies held up to 6.4x the ultimate load of equivalent plastic-only parts. Additionally, the thought process behind general co-part design is explored and a vision of simulation-driven automated co-part implementation is discussed.

Originality/value

This technique is a novel way to overcome one of the most common challenges preventing the functional use of additively manufactured parts. It delivers compelling performance with continuous carbon fiber reinforcement in 3D printed parts. Further study could extend the technique to any anisotropic manufacturing method, additive or otherwise.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 31 December 2013

Sang-Yoon Lee, Young-Ki Kim and Seong-Tae Kim

In current business management, knowledge is considered to be a strategic resource that can strengthen an organization’s competitiveness. Today, under the process of continuous…

Abstract

In current business management, knowledge is considered to be a strategic resource that can strengthen an organization’s competitiveness. Today, under the process of continuous globalization, almost all companies are rapidly exposed to global competition regardless of their scale or type of business. However, multinational management is very complicated and uncertain and it is hard for multinationals to effectively coordinate and manage their global value chains. In light of this, the utility of multinational management based on knowledge is increased. The present study examines multinational firms’ knowledge management systems, knowledge creation processes and global supply chain performance and attempts to reveal any significant linkages between these latent variables. For this research interest, we proposed 18 items to measure four types of knowledge creation processes (SECI) designed by Nonaka (1994) and revised by authors considering the global business environment, in particular involving the global supply chain management concept. Utilizing the confirmed SECI model, 128 sample companies were classified into four groups according to the levels of their knowledge creation processes. The empirical results of this study reveal important linkages between a multinational firm’s knowledge management system and knowledge creation process, as well as between its knowledge creation process and global supply chain management performance. In particular, the current work suggests that the creation and conversion of tacit knowledge as well as explicit knowledge can be effectively supported by information and communication technology.

Open Access
Article
Publication date: 14 June 2019

Xiaoning Long

Innovation is the fundamental driving force for the long-term sustainable development of an economy. After four decades of rapid economic growth, China is facing crises related to…

6492

Abstract

Purpose

Innovation is the fundamental driving force for the long-term sustainable development of an economy. After four decades of rapid economic growth, China is facing crises related to a demographic structure of “aging before getting rich,” industrial overcapacity of low-end products and environmental and resources constraints. This paper aims to discuss these issues.

Design/methodology/approach

Based on logical analysis and recapitulation of previous empirical research, this study presents the conclusion.

Findings

Scientific and technological innovation, as strategic support to improve social productivity and overall national strength, must be placed at the center of the country’s overall development.

Originality/value

The development model that preys upon cheap resources for extensive growth is unsustainable. Thus, the country needs an urgent strategic switch to drive its economic growth through research and development innovation and original technological advancement.

Details

China Political Economy, vol. 2 no. 1
Type: Research Article
ISSN: 2516-1652

Keywords

1 – 10 of 378