Search results

1 – 5 of 5
Article
Publication date: 6 February 2024

Farshid Rashidiyan, Seyed Rasoul Mirghaderi, Saeed Mohebbi and Sina Kavei

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed…

Abstract

Purpose

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed within these beams. The findings contribute to the understanding of their behaviour under seismic loads and offer insights into their potential for enhancing the lateral resistance of the structure. The abstract of the study highlights the significance of corners in structural plans, where non-coaxial columns, diagonal elements or beams deviating from a straight path are commonly observed. Typically, these non-straight beams are connected to the columns using pinned connections, despite their unknown seismic behaviour. Recognizing the importance of generating plastic hinges in special moment resisting frames and the lack of previous research on the involvement of these non-straight beams, this study aims to address this knowledge gap.

Design/methodology/approach

This study examines the seismic behaviour and plastic hinge formation of non-straight beams in steel structures. Non-straight beams are beams that connect non-coaxial columns and diagonal elements, or deviate from a linear path. They are usually pinned to the columns, and their seismic contribution is unknown. A critical case with a 12-m non-straight beam is analysed using Abaqus software. Different models are created with varying cross-section shapes and connection types between the non-straight beams. The models are subjected to lateral monotonic and cyclic loads in one direction. The results show that non-straight beams increase the lateral stiffness, strength and energy dissipation of the models compared to disconnected beams that act as two cantilevers.

Findings

The analysis results reveal several key findings. The inclusion of non-straight beams in the models leads to increased lateral stiffness, strength and energy dissipation compared to the scenario where the beams are disconnected and act as two cantilever beams. Plastic hinges are formed at both ends of the non-straight beam when a 3% drift is reached, contributing to energy damping and introducing plasticity into the structure. These results strongly suggest that non-straight beams play a significant role in enhancing the lateral resistance of the system. Based on the seismic analysis results, this study recommends the utilization of non-straight beams in special moment frames due to the formation of plastic hinges within these beams and their effective participation in resisting lateral seismic loads. This research fills a critical gap in understanding the behaviour of non-straight beams and provides valuable insights for structural engineers involved in the design and analysis of steel structures.

Originality/value

The authors believe that this research will greatly contribute to the knowledge and understanding of the seismic performance of non-straight beams in steel structures.

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 June 2024

Lisa Schwegmann, Volkmar Zabel and Steffen Koch

Adaptive load-bearing structures pursue the approach of saving mass within a load-bearing structure by adding external energy, thus saving materials and resources. This paper…

Abstract

Purpose

Adaptive load-bearing structures pursue the approach of saving mass within a load-bearing structure by adding external energy, thus saving materials and resources. This paper provides an overview of current research developments and shows some examples of existing prototypes.

Design/methodology/approach

First, basic terms and definitions from the research field of adaptive structures are introduced. After a brief historical insight, the numerical methods and prototypes used are presented as examples. The paper concludes with a summary of the state-of-the-art and open questions.

Findings

The current state of the art shows that the idea of adaptive structures offers great potential for more sustainability and resource efficiency in the construction industry. However, it also shows that research is still at the basic stage and that there are still some gaps in research.

Originality/value

The implementation of adaptive load-bearing structures is just one of many different approaches to greater sustainability in the construction sector. The issue of adaptive structures is a highly interdisciplinary field of research. The following paper is a literature review intended to summarize and critically evaluate the state-of-the-art research in this field. In the final section, some open questions are addressed, indicating that this research topic is still evolving.

Details

Engineering Computations, vol. 41 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 June 2024

Layin Wang, Rongfang Huang and Xiaoyu Li

China is a large country with different regions due to regional differences and project characteristics, and the selection of prefabricated building technology according to local…

Abstract

Purpose

China is a large country with different regions due to regional differences and project characteristics, and the selection of prefabricated building technology according to local conditions is the key to its sustainable development in China. The purpose of this paper is to develop the suitability evaluation system of prefabricated building technology from the perspective of the suitability concept and to analyze the selection path of prefabricated building technology and to provide a reference for selecting and developing prefabricated building technology schemes that meet regional endowments.

Design/methodology/approach

Based on relevant literature, technical specifications, and standards, this paper constructs an index system for analyzing the technical suitability of prefabricated buildings. It includes 23 indicators, 7 dimensions, and 3 aspects through the semantic clustering method. Following this, the comprehensive weight of each index is determined using the order relation method (G1) and the continuous ordered weighted averaging (COWA). The selection of technical schemes is comprehensively evaluated using Visekriterjumska Optimizacija Ikompromisno Resenje (VIKOR) and Fuzzy Comprehensive Evaluation Method.

Findings

 (1) The technical suitability of prefabricated buildings is influenced by 7 core factors, such as adaptability of resources and environment, project planning and design level, and economic benefit; (2) When selecting the appropriate technology for prefabricated buildings, economic suitability should be considered first, followed by regional suitability, and then technical characteristic; (3) The prefabricated building technology suitability evaluation model constructed in this paper has high feasibility in the technical suitability selection of the example project.

Research limitations/implications

The comprehensive evaluation model of prefabricated building technology suitability constructed in this paper provides technical selection support for the promotion and development of prefabricated buildings in different regions. In addition, the model can also be widely used in areas related to prefabricated building consulting and decision-making, and provides theoretical support for subsequent research.

Practical implications

This study provides a new decision support tool for prefabricated building technology suitability selection, which helps decision makers to make more rational technology choices.

Social implications

This study has a positive impact on the advancement of prefabricated building technology, the improvement of construction industry standards, and the promotion of sustainable development.

Originality/value

The contribution of this study is twofold: (1) Theoretically, this paper provides technical evaluation indicators and guidelines for provincial and regional governments to cultivate model cities, plan industrial bases, etc. (2) In practice, it offers project-level appropriate technology system solutions for the technology application of assemblers in various regions.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 5 of 5