Search results

1 – 10 of over 8000
Article
Publication date: 1 March 1997

Paul Steinmann, Peter Betsch and Erwin Stein

The objective of this work is to develop an element technology to recover the plane stress response without any plane stress specific modifications in the large strain regime…

1151

Abstract

The objective of this work is to develop an element technology to recover the plane stress response without any plane stress specific modifications in the large strain regime. Therefore, the essential feature of the proposed element formulation is an interface to arbitrary three‐dimensional constitutive laws. The easily implemented and computational cheap four‐noded element is characterized by coarse mesh accuracy and the satisfaction of the plane stress constraint in a weak sense. A number of example problems involving arbitrary small and large strain constitutive models demonstrate the excellent performance of the concept pursued in this work.

Details

Engineering Computations, vol. 14 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1989

Robert G. Whirley, John O. Hallquist and Gerald L. Goudreau

Recent progress in element technology in large scale explicit finite element codes has opened the way for the solution of elastoplastic shell problems of unprecedented complexity…

Abstract

Recent progress in element technology in large scale explicit finite element codes has opened the way for the solution of elastoplastic shell problems of unprecedented complexity. This new capability has focused attention on the numerical issues involved in the implementation of elastoplastic material models for shells, particularly when vectorizable algorithms are required for supercomputer applications. This paper reviews four algorithms currently in the literature for plane stress and shell plasticity. First, each of the four methods is described in detail. Next, an accuracy analysis is presented for each algorithm for perfectly plastic, linear kinematic hardening, and linear isotropic hardening cases. Finally, a comparison is made of the relative computational efficiency of the four algorithms, and the importance of vectorization is illustrated.

Details

Engineering Computations, vol. 6 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 March 1986

Philippe Jetteur

An implicit integration algorithm for elastoplastic constitutive equations in plane stress analysis is presented. The error associated with this algorithm is of the same order as…

Abstract

An implicit integration algorithm for elastoplastic constitutive equations in plane stress analysis is presented. The error associated with this algorithm is of the same order as the one reached in three‐dimensional analysis with the radial return algorithm. No subincrementation is needed. Moreover, the exact elastoplastic stress—strain matrix related to this algorithm is derived.

Details

Engineering Computations, vol. 3 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 May 2003

M. Rezaiee‐Pajand and M.R. Nazem

In this paper, quasi‐Tresca yield surfaces are reviewed. In order to do elasto‐plastic analysis, a new yield criterion is presented. The proposed yield surface can be used in…

Abstract

In this paper, quasi‐Tresca yield surfaces are reviewed. In order to do elasto‐plastic analysis, a new yield criterion is presented. The proposed yield surface can be used in nonlinear three‐dimensional analysis of structures. Function of the yield surface is presented in principal stress space and also Cartesian one. A computer program has been developed for nonlinear analysis in C++. Numerical examples have been solved by the proposed yield surface and good results have been obtained.

Details

Engineering Computations, vol. 20 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4550

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 May 2023

Kei Kimura, Takeshi Onogi, Naoya Yotsumoto and Fuminobu Ozaki

In this study, the effects of strain rate on the bending strength of full-scale wide-flange steel beams have been examined at elevated temperatures. Both full-scale loaded heating…

49

Abstract

Purpose

In this study, the effects of strain rate on the bending strength of full-scale wide-flange steel beams have been examined at elevated temperatures. Both full-scale loaded heating tests under steady-state conditions and in-plane numerical analysis using a beam element have been employed.

Design/methodology/approach

The load–deformation relationships in 385 N/mm2-class steel beam specimens was examined using steady-state tests at two loading rate values (0.05 and 1.00 kN/s) and at two constant member temperatures (600 and 700 °C). Furthermore, the stress–strain relationships considering the strain rate effects were proposed based on tensile coupon test results under various strain rate values. The in-plane elastoplastic numerical analysis was conducted considering the strain rate effect.

Findings

The experimental test results of the full-scale steel beam specimens confirmed that the bending strength increased with increase in strain rate. In addition, the analytical results agreed relatively well with the test results, and both strain and strain rate behaviours of a heated steel member, which were difficult to evaluate from the test results, could be quantified numerically.

Originality/value

The novelty of this study is the quantification of the strain rate effect on the bending strength of steel beams at elevated temperatures. The results clarify that the load–deformation relationship of steel beams could be evaluated by using in-plane analysis using the tensile coupon test results. The numerical simulation method can increase the accuracy of evaluation of the actual behaviour of steel members in case of fire.

Article
Publication date: 1 April 1986

Philippe Jetteur and François Frey

A non‐linear shallow thin shell element is described. The element is a curved quadrilateral one with corner nodes only. At each node, six degrees of freedom (i.e. three…

Abstract

A non‐linear shallow thin shell element is described. The element is a curved quadrilateral one with corner nodes only. At each node, six degrees of freedom (i.e. three translations and three rotations) make the element easy to connect to space beams, stiffeners or intersecting shells. The curvature is dealt with by Marguerre's theory. Membrane bending coupling is present at the element level and improves the element behaviour, especially in non‐linear analysis. The element converges to the deep shell solution. The sixth degree of freedom is a true one, which can be assimilated to the in‐plane rotation. The present paper describes how overstiffness due to membrane locking on the one hand and to the sixth degree of freedom on the other hand can be corrected without making use of numerical adjusted factors. The behaviour of this new element is analysed in linear and non‐linear static and dynamic tests.

Details

Engineering Computations, vol. 3 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 May 2002

Sven Klinkel and Sanjay Govindjee

In this paper an interface is derived between arbitrary three‐dimensional material laws and finite elements which include special stress conditions. The mechanical models of beams…

1476

Abstract

In this paper an interface is derived between arbitrary three‐dimensional material laws and finite elements which include special stress conditions. The mechanical models of beams and shells are usually based upon zero‐stress conditions. This requires a material law respecting the stress condition for each finite element formulation. Complicated materials, e.g. finite strain models are often described in the 3D‐continuum. Considering the zero‐stress condition requires a reformulation of these material laws, which is often complicated. The subject of this paper is to incorporate physically non‐linear 3D‐material laws in beam and shell elements. To this effect a local algorithm will be developed to condense an arbitrary 3D‐material law with respect to the zero‐stress condition. The algorithm satisfies the stress condition at each integration point on the element level.

Details

Engineering Computations, vol. 19 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 September 2019

Keyvan Kafaei and Rasul Bagheri

In accord with the literature reviews, there is not a promising examination regarding the several straight and curved cracks interaction with arbitrary arrangement in the…

Abstract

Purpose

In accord with the literature reviews, there is not a promising examination regarding the several straight and curved cracks interaction with arbitrary arrangement in the rectangular FGP plane. The purpose of this paper is to consider the effect of crack length, position of the point load, material non-homogeneity constant and also the arrangement of cracks on the resulting field intensity factors.

Design/methodology/approach

First of all, in order to obtain a set of Cauchy singular integral equations, both the dislocation method and the finite Fourier cosine transform technique are applied. Using the corresponding solution to these equations, the dislocation densities on the crack surfaces are then obtained. Considering the results, both the stress intensity factors (SIFs) and electric displacement intensity factors (EDIFs) for a vertical crack and the interaction between two straight and curved cracks, which have an arbitrary configuration, are determined.

Findings

The numerical examples are represented in order to illustrate the interesting mechanical and electrical coupling phenomena induced by multi-crack interactions. At the end, the effects of the material non-homogeneity constant, the crack length and the cracks arrangements on the SIFs and EDIFs are investigated.

Originality/value

The solutions are obtained in series expansion forms which may be considered as Green’s functions in an FGP rectangular plane possessing multiple cracks. The technique of Green’s function provides the ability to analyze multiple cracks having any smooth configuration.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 January 1988

I.M. May and T.H. Ganaba

The finite element method of analysis is used to determine the elastic buckling loads for plates with and without openings. The formulation is based on Mindlin plate theory. The…

Abstract

The finite element method of analysis is used to determine the elastic buckling loads for plates with and without openings. The formulation is based on Mindlin plate theory. The 8‐node serendipity element was employed to model the membrane behaviour of the plate in order to determine the in‐plane stress distribution throughout the plate due to the edge loading. The heterosis plate bending element was used in the formulation of the governing equations of the stability problem. The elastic buckling loads for plates with and without openings and under different edge loading conditions are determined and the results were compared with the analytical and numerical results available. The openings considered are circular and square located at the centre of the plate. Convergence of the solution for the plates considered is also discussed.

Details

Engineering Computations, vol. 5 no. 1
Type: Research Article
ISSN: 0264-4401

1 – 10 of over 8000