Search results

1 – 10 of 40
Article
Publication date: 20 January 2023

Sabah Ben Messaoud

The purpose of this paper is to make a contribution to understanding the influence of factors such as the water/cement (W/C) ratio and the granular class on the mechanical and…

Abstract

Purpose

The purpose of this paper is to make a contribution to understanding the influence of factors such as the water/cement (W/C) ratio and the granular class on the mechanical and physical properties of high-strength concretes (HSCs). In the formulations of HSC, aggregates by their high mass and volume proportion play an important role. When selecting aggregates, it is necessary to know their intrinsic properties. These properties influence the performance of concrete, in particular the quality of the granulate cimentary adhesion.

Design/methodology/approach

This experimental study focused on the effect of W/C ratio (0.25, 0.30, 0.35), the effect of replacing a part of cement by silica fume (SF) (8%), the effect of fraction of aggregate on properties of fresh and hardened concrete, the effect of different environment conversation like drinking water and sea water on compressive strength and the study of absorption of water and softening using the mix design method of the University of Sherbrooke combined with the Dreux-Gorisse method which gives good results.

Findings

At the end of our work, the examination of the results obtained made it possible to establish the correlations between the formulations studied and the physicomechanical characteristics of the concrete compositions (HSC25, HSC16, HSC8). The results of this study show that the use of three granular classifications (DMAX8, DMAX16 and DMAX25) and three report W/C (0.25, 0.30 and 0.35) in two different conservation environment (drinking water and sea water) give HSCs, HSC25 with an W/C = 0.25 ratio has reached the largest mechanical strength of 90 MPa for different environments of conservation. For selecting aggregates, it is necessary to know their intrinsic properties, these properties influence the strength of concrete. In general, there is a slight decrease in the compressive resistance of the specimens stored in seawater, it can be said that the conservation life has not had effect on the resistance (28 days). The effect of aggressive environment can appear in the long term.

Research limitations/implications

Mixed design and concrete fabrication with a 28-day compressive strength of up to 68 MPa or more of 90 MPa can now be possible used in Jiel (Algeria), and it should no longer be considered to be used only in an experimental domain. Addition of SF in concrete showed good development of strength between 7 and 28 days, depending on the design of the mix.

Practical implications

Concrete containing 8% SF with W/B of 0.25 has higher compressive strength than the other concretes, and concretes with SF are more resistant than concretes without SF, so it is possible to have concrete with a compressive strength of 82 MPa for W/C 0.25 without SF. Like as a result, we can avoid the use of SF to affect the strength of concrete at compressive strength of 68 MPa, and a slump of 21 cm, because the SF is the most expensive ingredient used in the composition of concrete and is therefore very important economically. One of the main factors of production of HSC above 90 MPa is use of aggregate DMAX25, which is stronger with W/B of 0.25 and 0.30.

Social implications

This mixtures leads to a very dense microstructure and low porosity and produces increased permeability of HSC and is able to resist the penetration of aggressive agents. This combination has a positive effect on the economy of concrete.

Originality/value

The combination of the Dreux-Gorisse method with the Sherbrook method is very beneficial for determining the percentage of aggregates used, and the use of coarse aggregates of Jijel to obtain HSC with 90 MPa and 16 cm of workability.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 January 2024

Cong Liu, Yanguo Yin and Rongrong Li

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Abstract

Purpose

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Design/methodology/approach

Cu-Bi mixed powder was ball milled at different ball–material ratios, and the preparation of Cu-Bi alloy materials was achieved through powder metallurgy technology. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were conducted to study the microstructure and phase composition of the mixed powder. The apparent density and flow characteristics of mixed powders were investigated using a Hall flowmeter. Tests on the crushing strength, impact toughness and tribological properties of self-lubricating alloy materials were conducted using a universal electronic testing machine, 300 J pendulum impact testing machine and M200 ring-block tribometer, respectively.

Findings

With the increase in ball–material ratio, the spherical copper matrix particles in the mixed powder became lamellar, the mechanical properties of the material gradually reduced, the friction coefficient of the material first decreased and then stabilized and the wear rate decreased initially and then increased. The increase in the ball–material ratio resulted in the fine network distribution of the Bi phase in the copper alloy matrix, which benefitted its enrichment on the worn surface for the formation a lubricating film and improvement of the material’s tribological performance. However, a large ball–material ratio can excessively weaken the mechanical properties of the material and reduce its wear resistance.

Originality/value

The effects of ball–material ratio on Cu-Bi mixed powder and material properties were clarified. This work provides a reference for the mechanical alloying process and its engineering applications.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 February 2024

Nilesh R. Parmar, Sanjay R. Salla, Hariom P. Khungar and B. Kondraivendhan

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on…

Abstract

Purpose

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on evaluating the effects of these materials on the fresh and hardened properties of concrete.

Design/methodology/approach

MK, a pozzolanic material, and QD, a fine aggregate by-product, are potentially sustainable alternatives for enhancing concrete performance and reducing environmental impact. The addition of different percentages of MK enhances the pozzolanic reaction, resulting in improved strength development. Furthermore, the optimum dosage of MK, mixed with QD, and mechanical properties like compressive, flexural and split tensile strength of concrete were evaluated to investigate the synergetic effect of MK and quarry dust for M20-grade concrete.

Findings

The results reveal the influence of metakaolin and QD on the overall performance of blended concrete. Cost analysis showed that the optimum mix can reduce the 7%–8% overall cost of the materials for M20-grade concrete. Energy analysis showed that the optimum mix can reduce 7%–8% energy consumption.

Originality/value

The effective utilization is determined with the help of the analytical hierarchy process method to find an optimal solution among the selected criteria. According to the AHP analysis, the optimum content of MK and quarry dust is 12% and 16%, respectively, performing best among all other trial mixes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 19 March 2024

Feng Chen, Zhongjin Wang, Dong Zhang and Shuai Zeng

Explore the development trend of chemically-improved soil in railway engineering.

Abstract

Purpose

Explore the development trend of chemically-improved soil in railway engineering.

Design/methodology/approach

In this paper, the technical standards home and abroad were analyzed. Laboratory test, field test and monitoring were carried out.

Findings

The performance design system of the chemically-improved soil should be established.

Originality/value

On the basis of the performance design, the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 16 April 2024

Sonali Khatua, Manoranjan Dash and Padma Charan Mishra

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and…

Abstract

Purpose

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and life cycles. This study aims to depict the development and life cycle of large open-pit iron ore mines and the intertwined organizational design of the departments/sections operated within the industry.

Design/methodology/approach

Primary data were collected on the site by participant observation, in-depth interviews of the field staff and executives, and field notes. Secondary data were collected from the literature review to compare and cite similar or previous studies on each mining activity. Finally, interactions were conducted with academic experts and top field executives to validate the findings. An organizational ethnography methodology was employed to study and analyse four large-scale iron ore mines of India’s largest iron-producing state, Odisha, from January to April 2023.

Findings

Six stages were observed for development and life cycle, and the operations have been depicted in a schematic diagram for ease of understanding. The intertwined functioning of organizational set-up is also discovered.

Originality/value

The paper will benefit entrepreneurs, mining and geology students, new recruits, and professionals in allied services linked to large iron ore mines. It offers valuable insights for knowledge enhancement, operational manual preparation and further research endeavours.

Details

Journal of Organizational Ethnography, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6749

Keywords

Article
Publication date: 23 September 2022

Amal A. Farahat, Ahmed A. Elansary and Hany A. Abdalla

Punching can trigger catastrophic failures in flat slabs because of its sudden nature resulting from exceeding the shear capacity of slabs. Effect of using recycled aggregate, as…

Abstract

Purpose

Punching can trigger catastrophic failures in flat slabs because of its sudden nature resulting from exceeding the shear capacity of slabs. Effect of using recycled aggregate, as an environmental-friendly alternative to traditional RC structures, on punching behavior of these slabs was not sufficiently investigated in the literature. Hence, this paper aims to experimentally study the effect of using recycled coarse aggregate (RCA) on the punching shear capacity (PSC) of RC flat slabs. The RCA is produced by crushing of waste of concrete standard cubes obtained from compression tests.

Design/methodology/approach

A total of 12 slab-column connection specimens with different slab thicknesses (140, 160 and 200 mm) and different RCA percentages (0%, 30% and 70%) were prepared and tested under a central point load, to test its effect on the behavior of flat slabs. The punching failure loads of the tested specimens were compared with those obtained according to the provisions of different international building codes.

Findings

Compared with natural aggregate concrete, mixes with 30% and 70% RCA experienced reductions in the compressive that did not exceed 4% and 21%, while reductions of 4% and 13% were observed for the tensile strength, respectively. The increase in the amount of RCA reduced the PSC by 0%–7%, 0%–4% and 4%–10% for slabs with a thickness of 140, 160 and 200 mm, respectively. For slabs with punching shear reinforcement (PSR), ACI 318 provided the closest estimation for the PSC by 9%, whereas EURO 2 overestimated the PSC by 25% and ECP 203 underestimated the PSC by 41%.

Research limitations/implications

The provided conclusions are obtained from the conducted experimental work where a constant W/C ratio, aggregate type and a maximum aggregate size of 19 mm for the RCA were adopted.

Originality/value

Enhancement in the behavior of flat slabs with various thicknesses and amounts of RCA because of introducing PSR is experimentally evaluated. The failure loads of the tested slabs with recycled and normal coarse aggregates were compared against different code provisions.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 March 2024

Ahmad Hadipour, Zahra Mahmoudi, Saeed Manoochehri, Heshmatollah Ebrahimi-Najafabadi and Zahra Hesari

Particles are of the controlled release delivery systems. Also, topically applied olive oil has a protective effect against ultraviolet B (UVB) exposure. Due to its sensitivity to…

Abstract

Purpose

Particles are of the controlled release delivery systems. Also, topically applied olive oil has a protective effect against ultraviolet B (UVB) exposure. Due to its sensitivity to oxidation, various studies have investigated the production of olive oil particles. The purpose of this study was to use chitosan and sodium alginate as the vehicle polymers for olive oil.

Design/methodology/approach

The gelation method used to prepare the sodium alginate miliparticles containing olive oil and particles were coated with chitosan. Morphology and size, zeta potential, infrared spectrum of olive oil miliparticles, encapsulation efficiency and oil release profile were investigated. Among 12 primary fabricated formulations, formulations F5 (olive oil loaded alginate miliparticles) and F11 (olive oil loaded alginate miliparticles + chitosan coat) were selected for further evaluations.

Findings

The size of the miliparticles was in the range of 1,100–1,600 µm. Particles had a spherical appearance, and chitosan coat made a smoother surface according to the scanning electron microscopy. The zeta potential of miliparticles were −30 mV for F5 and +2.7 mV for F11. Fourier transform infrared analysis showed that there was no interaction between olive oil and other excipients. Encapsulation efficiency showed the highest value of 85% in 1:4 (olive oil:alginate solution) miliparticles in F11. Release study indicated a maximum release of 68.22% for F5 and 60.68% for F11 in 24 h (p-value < 0.016). Therefore, coating with chitosan had a marked effect on slowing the release of olive oil. These results indicated that olive oil in various amounts can be successfully encapsulated into the sodium-alginate capsules cross-linked with glutaraldehyde.

Originality/value

To the best of the authors’ knowledge, no study has used chitosan and sodium alginate as the vehicle polymers for microencapsulation of olive oil.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 18 April 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Francis Augustus A. Pascua, Jules M. Juanites, Maricel A. Eneria, Richelle G. Zafra and Marish S. Madlangbayan

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper…

Abstract

Purpose

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper aims to present the results of experiments investigating the effect of incorporating such type of concrete waste on the strength and durability-related properties of concrete.

Design/methodology/approach

A total of 77 concrete cylinders sized Ø100 × 200 mm with varying amount of recycled concrete aggregate (RCA) (0%–100% by volume, at 25% increments) and maximum aggregate size (12.5, 19.0 and 25.0 mm) were fabricated and tested for slump, compressive strength, sorptivity and electrical resistivity. Disk-shaped specimens, 50-mm thick, were cut from the original cylinders for sorptivity and resistivity tests. Analysis of variance and post hoc test were conducted to detect statistical variability among the data.

Findings

Compared to regular concrete, a reduction of slump (by 18.6%), strength (15.1%), secondary sorptivity (31.5%) and resistivity (17.0%) were observed from concrete containing 100% RCA. Statistical analyses indicate that these differences are significant. In general, an aggregate size of 19 mm was found to produce the optimum value of slump, compressive strength and sorptivity in regular and RCA-added concrete.

Originality/value

The results of this study suggest that comparable properties of normal concrete were still achieved by replacing 25% of coarse aggregate volume with 19-mm RCA, which was processed from laboratory-tested concrete samples. Therefore, such material can be considered as a potential and sustainable alternative to crushed gravel for use in light or nonstructural concrete construction.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 26 March 2024

Haichao Wang, Xiaoqiang Liu, Zhanjiang Li, Li Chen, Pinqiang Dai and Qunhua Tang

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Abstract

Purpose

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Design/methodology/approach

Cyclic oxidation method was used to obtain the oxidation kinetic profile and oxidation rate. The microstructures of the surface and cross section of the samples after oxidation were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM).

Findings

The results show that the microstructure of the alloy mainly consisted of FCC (Face-centered Cubic Structure) main phase and carbides (M7C3, M23C6 and TiC). With the increase of Ti and C content, the microhardness, strength and oxidation resistance of the alloy were effectively improved. After oxidation at a constant temperature of 800 °C for 100 h, the preferential oxidation of chromium in the chromium carbide determined the early formation of dense chromium oxide layers compared to the HEAs substrate, resulting in the optimal oxidation resistance of the TC30 alloy.

Originality/value

More precipitated CrC can preferentially oxidize and rapidly form a dense Cr2O3 layer early in the oxidation, which will slow down the further oxidation of the alloy.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 40