Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 22 August 2024

Issam Krimi, Ziyad Bahou and Raid Al-Aomar

This work conducts a comprehensive analysis of how to incorporate resilience and sustainability into capacity expansion strategies for business-to-business (B2B) chemical supply…

Abstract

Purpose

This work conducts a comprehensive analysis of how to incorporate resilience and sustainability into capacity expansion strategies for business-to-business (B2B) chemical supply chains. This study aims to guide both researchers and managers on ensuring profitability in B2B chemical supply chains while minimizing environmental impacts, complying with regulations and mitigating disruptions and risks.

Design/methodology/approach

A systematic literature review is conducted to analyze the interplay between sustainability and resilience in chemical B2B supply chains, specify the quantitative and qualitative methods used to tackle this challenge and identify the drivers and barriers concerning capacity expansion. In addition, a comprehensive conceptual framework is suggested to outline a compelling research agenda.

Findings

The findings emphasize the increasing importance of modeling and resolving decision-making challenges related to sustainable and resilient supply chains, particularly in capital-intensive chemical industries. Yet, there is no standardized strategy for addressing these challenges. The predominant solution methods are heuristic and metaheuristic, and the selection of performance metrics tends to be empirical and tailored to specific cases. The main barriers to achieving sustainability and resilience arise from resource limitations within the supply chain. Conversely, the key drivers of performance focus on enhancing efficiency, competitiveness, cost effectiveness and risk management.

Practical implications

This work offers practitioners a conceptual framework that synthesizes the knowledge and tackles the challenges of designing sustainable and resilient supply chains as well as managing their operations in the context of B2B chemical supply chains. Results provide a practical guide for navigating the complex interplay of sustainability, resilience and chemical supply chain expansion.

Originality/value

The key concepts and dimensions associated with capacity expansion planning for a resilient and sustainable chemical supply chain are identified through structured and comprehensive analyses of existing literature. A conceptual framework is proposed for delineating the intersections among sustainability, resilience and chemical supply chain expansions. This mapping endeavor aims to facilitate a future characterized by the deployment of a nexus of resilience and sustainability in chemical supply chains. To this end, a promising future research agenda is accordingly outlined.

Details

Journal of Business & Industrial Marketing, vol. 39 no. 13
Type: Research Article
ISSN: 0885-8624

Keywords

Content available
Book part
Publication date: 24 April 2023

Peter C. B. Phillips

The discrete Fourier transform (dft) of a fractional process is studied. An exact representation of the dft is given in terms of the component data, leading to the frequency…

Abstract

The discrete Fourier transform (dft) of a fractional process is studied. An exact representation of the dft is given in terms of the component data, leading to the frequency domain form of the model for a fractional process. This representation is particularly useful in analyzing the asymptotic behavior of the dft and periodogram in the nonstationary case when the memory parameter d12. Various asymptotic approximations are established including some new hypergeometric function representations that are of independent interest. It is shown that smoothed periodogram spectral estimates remain consistent for frequencies away from the origin in the nonstationary case provided the memory parameter d < 1. When d = 1, the spectral estimates are inconsistent and converge weakly to random variates. Applications of the theory to log periodogram regression and local Whittle estimation of the memory parameter are discussed and some modified versions of these procedures are suggested for nonstationary cases.

Open Access
Article
Publication date: 15 December 2020

Tarikul Islam and Armina Akter

Fractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to…

Abstract

Purpose

Fractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to their importance in the nature of real world. In this article, the autors suggest a productive technique, called the rational fractional (DξαG/G)-expansion method, to unravel the nonlinear space-time fractional potential Kadomtsev–Petviashvili (PKP) equation, the nonlinear space-time fractional Sharma–Tasso–Olver (STO) equation and the nonlinear space-time fractional Kolmogorov–Petrovskii–Piskunov (KPP) equation. A fractional complex transformation technique is used to convert the considered equations into the fractional order ordinary differential equation. Then the method is employed to make available their solutions. The constructed solutions in terms of trigonometric function, hyperbolic function and rational function are claimed to be fresh and further general in closed form. These solutions might play important roles to depict the complex physical phenomena arise in physics, mathematical physics and engineering.

Design/methodology/approach

The rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is of the form U(ξ)=i=0nai(DξαG/G)i/i=0nbi(DξαG/G)i.

Findings

Achieved fresh and further abundant closed form traveling wave solutions to analyze the inner mechanisms of complex phenomenon in nature world which will bear a significant role in the of research and will be recorded in the literature.

Originality/value

The rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is newly established and productive.

Open Access
Article
Publication date: 22 November 2022

Kedong Yin, Yun Cao, Shiwei Zhou and Xinman Lv

The purposes of this research are to study the theory and method of multi-attribute index system design and establish a set of systematic, standardized, scientific index systems…

Abstract

Purpose

The purposes of this research are to study the theory and method of multi-attribute index system design and establish a set of systematic, standardized, scientific index systems for the design optimization and inspection process. The research may form the basis for a rational, comprehensive evaluation and provide the most effective way of improving the quality of management decision-making. It is of practical significance to improve the rationality and reliability of the index system and provide standardized, scientific reference standards and theoretical guidance for the design and construction of the index system.

Design/methodology/approach

Using modern methods such as complex networks and machine learning, a system for the quality diagnosis of index data and the classification and stratification of index systems is designed. This guarantees the quality of the index data, realizes the scientific classification and stratification of the index system, reduces the subjectivity and randomness of the design of the index system, enhances its objectivity and rationality and lays a solid foundation for the optimal design of the index system.

Findings

Based on the ideas of statistics, system theory, machine learning and data mining, the focus in the present research is on “data quality diagnosis” and “index classification and stratification” and clarifying the classification standards and data quality characteristics of index data; a data-quality diagnosis system of “data review – data cleaning – data conversion – data inspection” is established. Using a decision tree, explanatory structural model, cluster analysis, K-means clustering and other methods, classification and hierarchical method system of indicators is designed to reduce the redundancy of indicator data and improve the quality of the data used. Finally, the scientific and standardized classification and hierarchical design of the index system can be realized.

Originality/value

The innovative contributions and research value of the paper are reflected in three aspects. First, a method system for index data quality diagnosis is designed, and multi-source data fusion technology is adopted to ensure the quality of multi-source, heterogeneous and mixed-frequency data of the index system. The second is to design a systematic quality-inspection process for missing data based on the systematic thinking of the whole and the individual. Aiming at the accuracy, reliability, and feasibility of the patched data, a quality-inspection method of patched data based on inversion thought and a unified representation method of data fusion based on a tensor model are proposed. The third is to use the modern method of unsupervised learning to classify and stratify the index system, which reduces the subjectivity and randomness of the design of the index system and enhances its objectivity and rationality.

Details

Marine Economics and Management, vol. 5 no. 2
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 21 December 2021

Vahid Badeli, Sascha Ranftl, Gian Marco Melito, Alice Reinbacher-Köstinger, Wolfgang Von Der Linden, Katrin Ellermann and Oszkar Biro

This paper aims to introduce a non-invasive and convenient method to detect a life-threatening disease called aortic dissection. A Bayesian inference based on enhanced…

Abstract

Purpose

This paper aims to introduce a non-invasive and convenient method to detect a life-threatening disease called aortic dissection. A Bayesian inference based on enhanced multi-sensors impedance cardiography (ICG) method has been applied to classify signals from healthy and sick patients.

Design/methodology/approach

A 3D numerical model consisting of simplified organ geometries is used to simulate the electrical impedance changes in the ICG-relevant domain of the human torso. The Bayesian probability theory is used for detecting an aortic dissection, which provides information about the probabilities for both cases, a dissected and a healthy aorta. Thus, the reliability and the uncertainty of the disease identification are found by this method and may indicate further diagnostic clarification.

Findings

The Bayesian classification shows that the enhanced multi-sensors ICG is more reliable in detecting aortic dissection than conventional ICG. Bayesian probability theory allows a rigorous quantification of all uncertainties to draw reliable conclusions for the medical treatment of aortic dissection.

Originality/value

This paper presents a non-invasive and reliable method based on a numerical simulation that could be beneficial for the medical management of aortic dissection patients. With this method, clinicians would be able to monitor the patient’s status and make better decisions in the treatment procedure of each patient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 16 June 2022

Dejan Živkov and Jasmina Đurašković

This paper aims to investigate how oil price uncertainty affects real gross domestic product (GDP) and industrial production in eight Central and Eastern European countries (CEEC).

1405

Abstract

Purpose

This paper aims to investigate how oil price uncertainty affects real gross domestic product (GDP) and industrial production in eight Central and Eastern European countries (CEEC).

Design/methodology/approach

In the research process, the authors use the Bayesian method of inference for the two applied methodologies – Markov switching generalized autoregressive conditional heteroscedasticity (GARCH) model and quantile regression.

Findings

The results clearly indicate that oil price uncertainty has a low effect on output in moderate market conditions in the selected countries. On the other hand, in the phases of contraction and expansion, which are portrayed by the tail quantiles, the authors find negative and positive Bayesian quantile parameters, which are relatively high in magnitude. This implies that in periods of deep economic crises, an increase in the oil price uncertainty reduces output, amplifying in this way recession pressures in the economy. Contrary, when the economy is in expansion, oil price uncertainty has no influence on the output. The probable reason lies in the fact that the negative effect of oil volatility is not strong enough in the expansion phase to overpower all other positive developments which characterize a growing economy. Also, evidence suggests that increased oil uncertainty has a more negative effect on industrial production than on real GDP, whereas industrial share in GDP plays an important role in how strong some CEECs are impacted by oil uncertainty.

Originality/value

This paper is the first one that investigates the spillover effect from oil uncertainty to output in CEEC.

Details

Applied Economic Analysis, vol. 31 no. 91
Type: Research Article
ISSN: 2632-7627

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1386

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 14 December 2021

Phillip Baumann and Kevin Sturm

The goal of this paper is to give a comprehensive and short review on how to compute the first- and second-order topological derivatives and potentially higher-order topological…

Abstract

Purpose

The goal of this paper is to give a comprehensive and short review on how to compute the first- and second-order topological derivatives and potentially higher-order topological derivatives for partial differential equation (PDE) constrained shape functionals.

Design/methodology/approach

The authors employ the adjoint and averaged adjoint variable within the Lagrangian framework and compare three different adjoint-based methods to compute higher-order topological derivatives. To illustrate the methodology proposed in this paper, the authors then apply the methods to a linear elasticity model.

Findings

The authors compute the first- and second-order topological derivatives of the linear elasticity model for various shape functionals in dimension two and three using Amstutz' method, the averaged adjoint method and Delfour's method.

Originality/value

In contrast to other contributions regarding this subject, the authors not only compute the first- and second-order topological derivatives, but additionally give some insight on various methods and compare their applicability and efficiency with respect to the underlying problem formulation.

Details

Engineering Computations, vol. 39 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 3 June 2021

Ke Wang, Zheming Yang, Bing Liang and Wen Ji

The rapid development of 5G technology brings the expansion of the internet of things (IoT). A large number of devices in the IoT work independently, leading to difficulties in…

Abstract

Purpose

The rapid development of 5G technology brings the expansion of the internet of things (IoT). A large number of devices in the IoT work independently, leading to difficulties in management. This study aims to optimize the member structure of the IoT so the members in it can work more efficiently.

Design/methodology/approach

In this paper, the authors consider from the perspective of crowd science, combining genetic algorithms and crowd intelligence together to optimize the total intelligence of the IoT. Computing, caching and communication capacity are used as the basis of the intelligence according to the related work, and the device correlation and distance factors are used to measure the improvement level of the intelligence. Finally, they use genetic algorithm to select a collaborative state for the IoT devices.

Findings

Experimental results demonstrate that the intelligence optimization method in this paper can improve the IoT intelligence level up to ten times than original level.

Originality/value

This paper is the first study that solves the problem of device collaboration in the IoT scenario based on the scientific background of crowd intelligence. The intelligence optimization method works well in the IoT scenario, and it also has potential in other scenarios of crowd network.

Details

International Journal of Crowd Science, vol. 5 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

Content available
Article
Publication date: 25 May 2018

Veerachai Gosasang, Tsz Leung Yip and Watcharavee Chandraprakaikul

This paper aims to forecast inbound and outbound container throughput for Bangkok Port to 2041 and uses the results to inform the future planning and management of the port’s…

3820

Abstract

Purpose

This paper aims to forecast inbound and outbound container throughput for Bangkok Port to 2041 and uses the results to inform the future planning and management of the port’s container terminal.

Design/methodology/approach

The data used cover a period of 16 years (192 months of observations). Data sources include the Bank of Thailand and the Energy Policy and Planning Office. Cause-and-effect forecasting is adopted for predicting future container throughput by using a vector error correction model (VECM).

Findings

Forecasting future container throughput in Bangkok Port will benefit port planning. Various economic factors affect the volume of both inbound and outbound containers through the port. Three cases (scenarios) of container terminal expansion are analyzed and assessed, on the basis of which an optimal scenario is identified.

Research limitations/implications

The economic characteristics of Thailand differ from those of other countries/jurisdictions, such as the USA, the EU, Japan, China, Malaysia and Indonesia, and optimal terminal expansion scenarios may therefore differ from that identified in this study. In addition, six particular countries/jurisdictions are the dominant trading partners of Thailand, but these main trading partners may change in the future.

Originality/value

There are only two major projects that have forecast container throughput volumes for Bangkok Port. The first project, by the Japan International Cooperation Agency, applied both the trend of cargo volumes and the relationship of volumes with economic indices such as population and gross domestic product. The second project, by the Port Authority of Thailand, applied a moving average method to forecast the number of containers. Other authors have used time-series forecasting. Here, the authors apply a VECM to forecast the future container throughput of Bangkok Port.

Details

Maritime Business Review, vol. 3 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

1 – 10 of over 1000