Search results

1 – 10 of 515
Article
Publication date: 15 March 2024

Mohamed Slamani, Hocine Makri, Aissa Boudilmi, Ilian A. Bonev and Jean-Francois Chatelain

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use…

Abstract

Purpose

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use of the observability index and telescopic ballbar for accuracy enhancement.

Design/methodology/approach

The study uses the telescopic ballbar and an observability index for the calibration of an ABB IRB 120 robot, focusing on robotic orbital milling. Comparative simulation analysis selects the O3 index. Experimental tests, both static and dynamic, evaluate the proposed calibration approach within the robot’s workspace.

Findings

The proposed calibration approach significantly reduces circularity errors, particularly in robotic orbital milling, showcasing effectiveness in both static and dynamic modes at various tool center point speeds.

Research limitations/implications

The study focuses on a specific robot model and application (robotic orbital milling), limiting generalizability. Further research could explore diverse robot models and applications.

Practical implications

The findings offer practical benefits by enhancing the accuracy of robotic systems, particularly in precision tasks like orbital milling, providing a valuable calibration method.

Social implications

While primarily technological, improved robotic precision can have social implications, potentially influencing fields where robotic applications are crucial, such as manufacturing and automation.

Originality/value

This study’s distinctiveness lies in advancing the accuracy and precision of industrial robots during circular motions, specifically tailored for orbital milling applications. The innovative approach synergistically uses the observability index and telescopic ballbar to achieve these objectives.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 February 2024

Chao Xia, Bo Zeng and Yingjie Yang

Traditional multivariable grey prediction models define the background-value coefficients of the dependent and independent variables uniformly, ignoring the differences between…

Abstract

Purpose

Traditional multivariable grey prediction models define the background-value coefficients of the dependent and independent variables uniformly, ignoring the differences between their physical properties, which in turn affects the stability and reliability of the model performance.

Design/methodology/approach

A novel multivariable grey prediction model is constructed with different background-value coefficients of the dependent and independent variables, and a one-to-one correspondence between the variables and the background-value coefficients to improve the smoothing effect of the background-value coefficients on the sequences. Furthermore, the fractional order accumulating operator is introduced to the new model weaken the randomness of the raw sequence. The particle swarm optimization (PSO) algorithm is used to optimize the background-value coefficients and the order of the model to improve model performance.

Findings

The new model structure has good variability and compatibility, which can achieve compatibility with current mainstream grey prediction models. The performance of the new model is compared and analyzed with three typical cases, and the results show that the new model outperforms the other two similar grey prediction models.

Originality/value

This study has positive implications for enriching the method system of multivariable grey prediction model.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 30 April 2024

Yong Wang, Yuting Liu and Fan Xu

Soft robots are known for their excellent safe interaction ability and promising in surgical applications for their lower risks of damaging the surrounding organs when operating…

Abstract

Purpose

Soft robots are known for their excellent safe interaction ability and promising in surgical applications for their lower risks of damaging the surrounding organs when operating than their rigid counterparts. To explore the potential of soft robots in cardiac surgery, this paper aims to propose an adaptive iterative learning controller for tracking the irregular motion of the beating heart.

Design/methodology/approach

In continuous beating heart surgery, providing a relatively stable operating environment for the operator is crucial. It is highly necessary to use position-tracking technology to keep the target and the surgical manipulator as static as possible. To address the position tracking and control challenges associated with dynamic targets, with a focus on tracking the motion of the heart, control design work has been carried out. Considering the lag error introduced by the material properties of the soft surgical robotic arm and system delays, a controller design incorporating iterative learning control with parameter estimation was used for position control. The stability of the controller was analyzed and proven through the construction of a Lyapunov function, taking into account the unique characteristics of the soft robotic system.

Findings

The tracking performance of both the proportional-derivative (PD) position controller and the adaptive iterative learning controller are conducted on the simulated heart platform. The results of these two methods are compared and analyzed. The designed adaptive iterative learning control algorithm for position control at the end effector of the soft robotic system has demonstrated improved control precision and stability compared with traditional PD controllers. It exhibits effective compensation for periodic lag caused by system delays and material characteristics.

Originality/value

Tracking the beating heart, which undergoes quasi-periodic and complex motion with varying accelerations, poses a significant challenge even for rigid mechanical arms that can be precisely controlled and makes tracking targets located at the surface of the heart with the soft robot fraught with considerable difficulties. This paper originally proposes an adaptive interactive learning control algorithm to cope with the dynamic object tracking problem. The algorithm has theoretically proved its convergence and experimentally validated its performance at the cable-driven soft robot test bed.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 21 February 2024

Jerko Ledic Neto, Dalton Francisco Andrade, Hai-Yan Helen Lu, Anna Cecilia Mendonca Amaral Petrassi and Antonio Renato Pereira Moro

This study aimed to develop a psychometrically reliable job satisfaction (JS) measure for university employees, guiding administrative decisions and monitoring satisfaction over…

Abstract

Purpose

This study aimed to develop a psychometrically reliable job satisfaction (JS) measure for university employees, guiding administrative decisions and monitoring satisfaction over time in public universities.

Design/methodology/approach

A JS survey developed by a Brazilian federal university’s sustainability committee containing 58 items across physical, cognitive and organizational domains was longitudinally tested with 1,214 responses collected. The data were analyzed using Item Response Theory (IRT) analysis, employing the Graded Response Model, with tools such as frequency analysis, item characteristic curve, and full-information factor analysis in RStudio. The scale’s criterion validity was also established via expert qualitative interpretation.

Findings

The instrument’s internal consistency was confirmed as the results demonstrated its high reliability with a marginal reliability coefficient of 0.95. Significant findings revealed that recognition and supervisor relationships were key discriminators of JS and that workers began to perceive satisfaction when basic environmental conditions were met.

Research limitations/implications

It is important to mention that the application of this scale is specifically limited to higher education institutions and may not be directly applicable to other educational settings or industry sectors without modifications.

Originality/value

Although numerous measures and scales have been developed to assess JS, one elaborated by using IRT in a public university environment was lacking. Due to shifting dynamics in the workplace, traditional measurement of JS has proven inadequate, necessitating a more precise, accessible and updated tool. The developed scale allows precisely targeted interventions to improve JS and can be reapplied to evaluate their effectiveness. This research thus contributes a valuable tool for academic organizational psychology, enhancing the understanding of the measurement of JS.

Details

International Journal of Public Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3558

Keywords

Article
Publication date: 16 February 2024

Neeraj Joshi, Sudeep R. Bapat and Raghu Nandan Sengupta

The purpose of this paper is to develop optimal estimation procedures for the stress-strength reliability (SSR) parameter R = P(X > Y) of an inverse Pareto distribution (IPD).

Abstract

Purpose

The purpose of this paper is to develop optimal estimation procedures for the stress-strength reliability (SSR) parameter R = P(X > Y) of an inverse Pareto distribution (IPD).

Design/methodology/approach

We estimate the SSR parameter R = P(X > Y) of the IPD under the minimum risk and bounded risk point estimation problems, where X and Y are strength and stress variables, respectively. The total loss function considered is a combination of estimation error (squared error) and cost, utilizing which we minimize the associated risk in order to estimate the reliability parameter. As no fixed-sample technique can be used to solve the proposed point estimation problems, we propose some “cost and time efficient” adaptive sampling techniques (two-stage and purely sequential sampling methods) to tackle them.

Findings

We state important results based on the proposed sampling methodologies. These include estimations of the expected sample size, standard deviation (SD) and mean square error (MSE) of the terminal estimator of reliability parameters. The theoretical values of reliability parameters and the associated sample size and risk functions are well supported by exhaustive simulation analyses. The applicability of our suggested methodology is further corroborated by a real dataset based on insurance claims.

Originality/value

This study will be useful for scenarios where various logistical concerns are involved in the reliability analysis. The methodologies proposed in this study can reduce the number of sampling operations substantially and save time and cost to a great extent.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 4 April 2024

Chuyu Tang, Hao Wang, Genliang Chen and Shaoqiu Xu

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior…

Abstract

Purpose

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior probabilities of the mixture model are determined through the proposed integrated feature divergence.

Design/methodology/approach

The method involves an alternating two-step framework, comprising correspondence estimation and subsequent transformation updating. For correspondence estimation, integrated feature divergences including both global and local features, are coupled with deterministic annealing to address the non-convexity problem of registration. For transformation updating, the expectation-maximization iteration scheme is introduced to iteratively refine correspondence and transformation estimation until convergence.

Findings

The experiments confirm that the proposed registration approach exhibits remarkable robustness on deformation, noise, outliers and occlusion for both 2D and 3D point clouds. Furthermore, the proposed method outperforms existing analogous algorithms in terms of time complexity. Application of stabilizing and securing intermodal containers loaded on ships is performed. The results demonstrate that the proposed registration framework exhibits excellent adaptability for real-scan point clouds, and achieves comparatively superior alignments in a shorter time.

Originality/value

The integrated feature divergence, involving both global and local information of points, is proven to be an effective indicator for measuring the reliability of point correspondences. This inclusion prevents premature convergence, resulting in more robust registration results for our proposed method. Simultaneously, the total operating time is reduced due to a lower number of iterations.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 22 March 2024

Shahin Alipour Bonab, Alireza Sadeghi and Mohammad Yazdani-Asrami

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are…

Abstract

Purpose

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are used to dampen the electric field imposed on the insulator. The purpose of this study is to present a fast and intelligent surrogate model for determination of the electric field imposed on the surface of a 120 kV composite insulator, in presence of the Corona ring.

Design/methodology/approach

Usually, the structural design parameters of the Corona ring are selected through an optimization procedure combined with some numerical simulations such as finite element method (FEM). These methods are slow and computationally expensive and thus, extremely reducing the speed of optimization problems. In this paper, a novel surrogate model was proposed that could calculate the maximum electric field imposed on a ceramic insulator in a 120 kV line. The surrogate model was created based on the different scenarios of height, radius and inner radius of the Corona ring, as the inputs of the model, while the maximum electric field on the body of the insulator was considered as the output.

Findings

The proposed model was based on artificial intelligence techniques that have high accuracy and low computational time. Three methods were used here to develop the AI-based surrogate model, namely, Cascade forward neural network (CFNN), support vector regression and K-nearest neighbors regression. The results indicated that the CFNN has the highest accuracy among these methods with 99.81% R-squared and only 0.045468 root mean squared error while the testing time is less than 10 ms.

Originality/value

To the best of the authors’ knowledge, for the first time, a surrogate method is proposed for the prediction of the maximum electric field imposed on the high voltage insulators in the presence Corona ring which is faster than any conventional finite element method.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Samson Edo and Osaro Oigiangbe

The purpose of this study is to empirically investigate how external debt vulnerability has affected the economy of emerging countries over time, with particular reference to…

Abstract

Purpose

The purpose of this study is to empirically investigate how external debt vulnerability has affected the economy of emerging countries over time, with particular reference to Sub-Saharan African countries. It also deals with the policy issues associated with the economic effects.

Design/methodology/approach

The techniques of dynamic ordinary least squares and fully modified ordinary least squares are used in this investigation, covering the period 1990–2022. A panel of 43 Sub-Saharan African countries is used in the study.

Findings

The estimation results reveal that external debt vulnerability impacted negatively on economic growth, thus validating the concerns raised about the debt problem in Sub-Saharan Africa. Furthermore, the results revealed that domestic credit and openness of economy played a passive role and were therefore unable to cushion the adverse effect of debt vulnerability. Capital stock, however, stands out as the only variable that played a significant positive role in facilitating economic growth. The results are considered to be highly reliable for short-term forecast of economic growth and formulation of relevant policies.

Originality/value

Over the years, economic analysts and stakeholders have expressed concern about the inadequate ratio of foreign reserves to external debt in developing countries. The effect of this external debt vulnerability on the economy of these countries has yet to be given sufficient attention by researchers. In view of this perceived void, this current study is carried out to determine the economic and policy consequences of the problem.

Details

Journal of Financial Economic Policy, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-6385

Keywords

Article
Publication date: 6 February 2024

Lijuan Pei

The purpose of this study is to explore the coopetition relationships between platform owners and complementors in complementary product markets. Drawing on the coopetition…

Abstract

Purpose

The purpose of this study is to explore the coopetition relationships between platform owners and complementors in complementary product markets. Drawing on the coopetition theory, the authors examined the evolutionary trends of the coopetition relationships between platform owners and complementors and explore the main influence factors.

Design/methodology/approach

The authors used Lotka–Volterra model to analyze the coopetition relationship between platform owners and complementors, including the evolutionary trends as well as the results. Considering the feasibility of sample data collection, simulation is used to verify the effects of different factors on the evolution of coopetition relationships.

Findings

The results show that there are four possible results of the competition in the complementary products market. That comprises “winner-take-all for platform owners,” “winner-take-all for complementors,” “stable competitive coexistence” and “unstable competitive coexistence,” where “stable competitive coexistence” is the optimal evolutionary state. Moreover, the results of competitive evolution are determined by innovation subjects’ interaction parameters. However, the natural growth rate, the initial market benefits of the two innovators and the overall benefits of the complementary product markets influence the time to reach a steady state.

Originality/value

The study provides new insights into the entry of platform owners into complementary markets, and the findings highlight the fact that in complementary product markets, platform owners and complementors should seek “competitive coexistence” rather than “winner-takes-all.” Moreover, the authors also enrich the coopetition theory by revealing the core factors that influence the evolution of coopetition relationships, which further enhance the analysis of the evolutionary process of coopetition relationships.

Details

Chinese Management Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-614X

Keywords

Access

Year

Last 3 months (515)

Content type

Earlycite article (515)
1 – 10 of 515